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SUMMARY

Paternal DNA demethylation in mammalian zygotes
is achieved through Tet3-mediated iterative oxida-
tion of 5-methylcytosine (5mC) coupled with repli-
cation-dependent dilution. Tet3-mediated paternal
DNA demethylation is believed to play important
roles in mouse development given that Tet3 hetero-
zygous embryos derived from Tet3-deficient oocytes
exhibit embryonic sublethality. Here, we demon-
strate that the sublethality phenotype of the Tet3
maternal knockout mice is caused by haploinsuffi-
ciency but not defective paternal 5mC oxidation.
We found that Tet3 heterozygous progenies derived
from heterozygous father or mother also exhibit sub-
lethality. Importantly, wild-type embryos reconsti-
tuted with paternal pronuclei that bypassed 5mC
oxidation develop and grow to adulthood normally.
Genome-scale DNA methylation analysis demon-
strated that hypermethylation in maternal Tet3
knockout embryos is largely diminished by the blas-
tocyst stage. Our study thus reveals that Tet3-me-
diated paternal 5mC oxidation is dispensable for
mouse development and suggests the existence of
a compensatory mechanism for defective 5mC
oxidation in preimplantation embryos.
INTRODUCTION

DNAmethylation, the addition of a methyl group to the fifth posi-

tion of cytosine (5-methylcytosine, 5mC), plays important roles

in gene silencing and genome stability, and is essential for

mammalian development (Smith and Meissner, 2013). DNA

methylation is established by the de novo DNA methyltrans-

ferases DNMT3A and DNMT3B, and is maintained by DNMT1.

Although the DNA methylation pattern is faithfully maintained

throughout generations in somatic cells, it is globally erased dur-
C

ing preimplantation development (Saitou et al., 2012; Sasaki and

Matsui, 2008). After fertilization, both paternal and maternal ge-

nomes become hypomethylated and reach their lowest levels

at the blastocyst stage even though the hypomethylated status

is established differentially between the parental genomes.

Maternal 5mC is mostly diluted in a DNA replication-dependent

manner (Rougier et al., 1998), likely because of the limited avail-

ability of DNMT1 in early embryos (Hirasawa et al., 2008). In

contrast, the paternal genome is subjected to global active de-

methylation (Mayer et al., 2000; Oswald et al., 2000). We and

others have found that Tet3 oxidizes paternal 5mC into 5-hy-

droxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxyl-

cytosine in mouse zygotes (Gu et al., 2011; Inoue et al., 2011;

Wossidlo et al., 2011), and that the 5mC oxidation products

are gradually lost during preimplantation development through

DNA replication-dependent passive dilution (Inoue et al., 2011;

Inoue and Zhang, 2011). Recent genome-scale analyses have

also revealed that a large proportion of paternal 5mCs undergo

passive dilution without oxidation (Guo et al., 2014a; Shen

et al., 2014).

In contrast to the great progress that has been made in under-

standing themechanism of paternal DNA demethylation, the bio-

logical significance of this process remains poorly understood.

The importance of this event for mammalian development was

suggested by previous studies that demonstrated that paternal

DNA demethylation is conserved in certain species, including

rabbit, bovine, and human (Guo et al., 2014b; Lepikhov et al.,

2008; Reis Silva et al., 2011; Wossidlo et al., 2011). However, a

similar phenomenon has not been observed in sheep, pig, and

goat, raising a question as to whether this event plays a general

role in mammalian development (Beaujean et al., 2004; Jeong

et al., 2007; Park et al., 2010). In addition, a previous study

demonstrated that although paternal DNA demethylation was

impaired in mouse zygotes derived from round spermatid injec-

tion, the development of the zygotes was normal (Polanski et al.,

2008). Taken together, these studies have generated conflicting

interpretations regarding the role of paternal DNA demethylation

in mammalian development.

Nevertheless, it is generally believed that Tet3-mediated

paternal DNA demethylation plays an important role in mouse
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development (Kohli and Zhang, 2013; Messerschmidt et al.,

2014; Pastor et al., 2013; Seisenberger et al., 2013; Wu and

Zhang, 2014). This notion is based on a previous study in which

it was observed that loss of maternal Tet3 protein prevents

paternal 5mC oxidation in zygotes and leads to embryonic sub-

lethality (Gu et al., 2011). In that study, heterozygous (Het) em-

bryos derived from crosses of germ cell conditional knockout

(CKO) females with wild-type (WT) males exhibited delayed

expression of Oct4 gene from the paternal allele during preim-

plantation development, and, importantly, �40% of the Het em-

bryos degenerated after midgestation (Gu et al., 2011). There are

at least two possible explanations for this sublethal phenotype:

First, Tet3-mediated paternal DNA demethylation is required

for mouse development. However, delayed paternal Oct4 ex-

pression is unlikely to be the cause of the sublethality because

it is recovered by the blastocyst-stage, a stage beyond which

the embryos can develop normally (Gu et al., 2011). The second

possibility is Tet3 haploinsufficiency due to deletion of the

maternal allele. This possibility should be considered given that

42% of previously screened mouse genes exhibit haploinsuffi-

ciency (White et al., 2013). Thus, it is necessary to evaluate these

two possibilities to determine whether Tet3-mediated paternal

DNA demethylation is required for mouse development.

In this study, we demonstrated that the sublethality of Tet3

maternal KO mice is caused by Tet3 haploinsufficiency, but not

by defective paternal 5mC oxidation. Furthermore, genome-

scale DNA methylation analysis revealed that hypermethylation

in maternal KO zygotes is largely reset by the blastocyst stage,

suggesting the existence of a compensatory demethylation path-

way in preimplantation embryos.

RESULTS

Tet3 Maternal KO Causes Neonatal Sublethality
As reported recently (Shen et al., 2014), we generated a Tet3

conditional KO (CKO) mouse that allows deletion of Tet3 in oo-

cytes expressing Zp3Cre. We refer to two loxP and one loxP

(deleted) alleles as ‘‘f’’ and ‘‘–,’’ respectively. Immunostaining

with an anti-Tet3 antibody confirmed that Tet3 is depleted in zy-

gotes derived from oocytes of [Zp3Cre, Tet3f/f] females fertilized

with WT sperm (maternal KO zygotes). In contrast, Tet3 is readily

detectable in the paternal pronuclei of control zygotes derived

from oocytes of [Tet3f/f] females (Figure 1A). Consistent with

the notion that 5hmC in paternal pronuclei is generated bymater-

nally deposited Tet3, 5hmC is completely lost in maternal KO zy-

gotes, whereas the 5mC signal in paternal pronuclei is slightly

increased (Figure 1B).

To examine the developmental potential of maternal KO em-

bryos, we crossed WT [Tet3f/f] or CKO [Zp3Cre, Tet3f/f] females

with WT males. Caesarian section (C-section) at embryonic

day 19.5 (E19.5) revealed that the maternal KO embryos did

not show a significant increase of developmental failure as evi-

denced by implantation sites and dead bodies (Figure 1C; Table

S1). We confirmed that all of the maternal KO embryos geno-

typed were Het (29/29), indicating efficient deletion of the Tet3

allele by Zp3Cre. This result indicates that defective paternal

5mC oxidation does not significantly compromise embryonic

development. This seems to be in conflict with a previous report
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that �40% of Tet3 maternal KO embryos ([TNAPCre, Tet3f/–]

female3WTmale) die before birth (Gu et al., 2011). This pheno-

typic difference could be caused by the different maternal geno-

types employed in the two studies, as we used CKOmice with a

WT background ([Tet3f/f]), whereas the previous study usedmice

with a Het background ([Tet3f/–]). To test this possibility, we

generated CKO females with a Het background [Zp3Cre,

Tet3f/–] and crossed with WT males. C-section at E19.5 revealed

that, consistent with the previous report, �40% of embryos

showed lethality during embryogenesis (Figure 1C; Table S1).

We next assessed the neonatal and postnatal growth of the

maternal KO progenies that were derived from [Zp3Cre, Tet3f/f]

females naturally mated with WT males. Daily checking of deliv-

ery and counting the number of surviving pups revealed that a

significantly larger population (33%) of maternal KO progenies

died within 3 days after birth compared with controls (17%) (Fig-

ure 1D; Table S2). The surviving progenies at day 3 were viable

and grew normally (Figure 1E). Thus, these results indicate that

Tet3 maternal KO progenies display neonatal sublethality.

Tet3 Heterozygous Mice Exhibit Neonatal Sublethality
Because maternal KO progenies are Het, and Tet3 null mice are

known to be neonatal lethal (Gu et al., 2011; Wang et al., 2013),

the observed sublethality could be caused by Tet3 haploinsuffi-

ciency. To examine this possibility, we asked whether Tet3 Het

progenies derived from Het females exhibit neonatal sublethality

similarly to the maternal KO progenies. Mating of Het females

with WTmales followed by C-section at E19.5 showed no signif-

icant developmental failure in the embryos (Figure 2A; Table S3).

As expected, about half (49%) of the embryos were Het (Fig-

ure 2B). Analysis of neonatal and postnatal growth indicated

that a significant population (31%) of the progenies died within

3 days after birth (Figure 2C; Table S4). All of the progenies

that survived the first 3 days were viable at least until 20 days af-

ter birth. Genotyping of the living pups at 20 days after birth re-

vealed that the Het population (38%) was markedly smaller

than the WT population (Figure 2D). These results indicate that

Tet3 Het progenies exhibit neonatal sublethality in a similar

fashion to maternal KO progenies.

It is assumed that oocytes fromHet femalesmay have only half

the amount of Tet3 protein, which may cause incomplete oxida-

tion of paternal 5mC in zygotes. This assumption makes it un-

clear whether the sublethality of Tet3 Het progenies is caused

by haploinsufficiency at the neonatal stage or by a potential

compromise of paternal 5mC oxidation at the zygote stage. To

distinguish between these possibilities, we generated Tet3 Het

males and crossed them with WT females. Given that paternal

5mC oxidation is solely dependent on maternally deposited

Tet3 protein (Gu et al., 2011, Guo et al., 2014a; Shen et al.,

2014), zygotes derived from these mating pairs should undergo

normal 5mC oxidation. Notably, natural mating of Het males with

WT females also resulted in neonatal sublethality (Figure 2C; Ta-

ble S4). Genotyping of the surviving pups at 20 days after birth

revealed that the Het population (34%) was substantially smaller

than theWT population (Figure 2D), similar to what was observed

in crosses of Het females with WT males. Taken together, these

results demonstrate that Tet3 Het mice exhibit haploinsuffi-

ciency defects in neonatal development.



A B

C D

E

Figure 1. Tet3 Maternal KO Progenies Show

Neonatal Sublethality

(A) Representative images of zygotes stained with anti-

Tet3 antibody. Maternal chromatin is marked by

H3K4me3. M, maternal pronucleus; P, paternal pronu-

cleus. Scale bar represents 20 mm.

(B) Representative images of zygotes stained with anti-

5hmC (red in merge) and anti-5mC (green in merge).

(C) Percentage of living (blue), dead (red), and absorbed

(orange) embryos at E19.5. Implantation sites without

visible embryos were counted as ‘‘absorbed.’’ Dead

bodies at birth were counted as ‘‘dead.’’ C57BL/6J

males were used for mating. The total number of em-

bryos obtained is indicated below the bars. The total

number of litters examined is indicated within the pa-

rentheses. p, c2 test for ‘‘living.’’ See also Table S1.

(D) Percentage of progenies that died within 3 days after

birth. C57BL/6J males were used for mating. The total

number of progenies examined is indicated below the

bars. The total number of deliveries during mating term

for 3–4 months is indicated within parentheses. A total

of seven mating pairs were examined in both groups. p,

c2 test. See also Table S2.

(E) Growth curve of progenies from the indicated fe-

males. The number of progenies examined is indicated

in parentheses. Error bar represents SD.
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Figure 2. Tet3 Heterozygous Mice Show

Neonatal Sublethality

(A) Percentage of living (blue), dead (red), and ab-

sorbed (orange) embryos at E19.5. Implantation sites

without visible embryos were counted as ‘‘ab-

sorbed.’’ Dead bodies at birth were counted as

‘‘dead.’’ C57BL/6J males were used for mating. The

total number of embryos obtained is indicated below

the bars. The total number of litters examined is

indicated within parentheses. p, c2 test for ‘‘living.’’

See also Table S3.

(B) Genotype of embryos living at E19.5. The total

number of pups examined is indicated below the

bars.

(C) Percentage of progenies that died within 3 days

after birth. C57BL/6J males were used for mating as

WT. The total number of progenies examined is

indicated below the bars. The total number of de-

liveries during the mating term for 3–4 months is

indicated within parentheses. A total of five, nine, and

four mating pairs were examined for [Tet3+/+] fe-

males, [Tet3+/–] females, and [Tet3+/–] males, res-

pectively. p, c2 test. See also Table S4.

(D) Genotype of living pups at 20 days after birth. The

total number of pups examined is indicated below

the bars.
Tet3-Mediated Paternal 5mC Oxidation Is Dispensable
for Mouse Development
Although the above results suggest that the Tet3 gene shows

haploinsufficiency, it is still unclear whether Tet3-mediated

paternal 5mC oxidation is developmentally important. Thus, it

is necessary to distinguish the potential effect of defective

paternal 5mC oxidation from the effect of haploinsufficiency.

Therefore, we attempted to reconstruct genetically WT zygotes

that bypass paternal 5mC oxidation through pronuclear transfer

(NT). First, we removed paternal pronuclei from WT zygotes at

the late-zygotic (PN5) stage and used the remaining cytoplasm

containing maternal pronuclei as recipients (Figure 3A). We

then isolated paternal pronuclei from maternal KO zygotes

([Zp3Cre, Tet3f/f] females 3WT males) at the same zygotic stage

as donor pronuclei. Importantly, although the donor paternal

pronuclei were genetically WT, they escaped Tet3-mediated

5mC oxidation. Fusion with the recipients allowed us to recon-
466 Cell Reports 10, 463–470, February 3, 2015 ª2015 The Authors
struct genetically WT zygotes with paternal

pronuclei, bypassing 5mC oxidation (Fig-

ure 3A, NT-KO). As a control, we used

paternal pronuclei from WT zygotes

([Tet3f/f] females 3 WT males) that had

gone through 5mC oxidation as donors

(Figure 3A, NT-WT).

Immunostaining with anti-5hmC antibody

at the two-cell stage (20 hr after NT) con-

firmed that the 5hmC levels in NT-KO em-

bryos were as low as those in maternal

KO embryos, indicating that Tet3-mediated

paternal 5mC oxidation does not occur in

NT-KO embryos (Figure 3B). This suggests

that Tet3 protein retained in the recipient
cytoplasm is not sufficient to trigger massive 5mC oxidation in

the reconstructed embryos. This is plausible because Tet3

mainly localizes to the paternal pronuclei that have been

removed from the recipients (Gu et al., 2011; Inoue et al.,

2012). Additionally, since Tet3 is no longer localized to nuclei af-

ter the first mitosis (Gu et al., 2011), the time window during

which the remaining Tet3 can function is very limited due to

the quick entry of the embryo into the first mitosis (within 2 hr af-

ter fusion). Thus, we successfully created geneticallyWT zygotes

without paternal 5mC oxidation.

To examine the development of the reconstructed embryos,

we transplanted them into pseudopregnant females. C-section

at E19.5 revealed that NT-KO embryos could develop to term

at a ratio similar to that observed for NT-WT embryos (Figures

3C and 3D; Table S5). Furthermore, no significant differences

in the weights of embryos and placentae were observed (Fig-

ure 3E). Importantly, no NT-KO pups showed neonatal lethality



and all of the mice developed normally to adulthood (Figures 3F

and 3G). Mating of adult NT-KO mice with WT mice confirmed

that both NT-KO males and females were fertile (Figure 3H).

Taken together, these results demonstrate that Tet3-mediated

paternal 5mC oxidation is dispensable for mouse development.

The Paternal Genome of Maternal Tet3 KO Embryos Is
Hypomethylated by the Blastocyst Stage
After the first wave of DNA demethylation in zygotes, the embry-

onic genome becomes further demethylated during preimplan-

tation development and reaches its lowest point of methylation

at the blastocyst stage (Guo et al., 2014b; Smith et al., 2012,

2014). To examine the effect of the maternal loss of Tet3 on

DNA methylation at the blastocyst stage, we performed a

genome-scale methylome analysis on one-cell and blastocyst-

stage embryos generated using Tet3 CKO oocytes (C57BL/6J

3 129/Sv background) and CAST/EiJ sperm (Table S6). Due to

the limited cell numbers of the samples, we used the reduced

representative bisulfite sequencing (RRBS) method, which sam-

ples�5% of total CpG of the mouse genome (Smith et al., 2012).

Using SNP information unique to the CAST strain, we dissoci-

ated the methylation state of the paternal genome from that of

the maternal genome. In total, we identified 83,172 SNP-tracked

CpGs commonly covered in all samples, among which 17,442

CpGs undergo dramatic DNA demethylation in zygotes (methyl-

ation level in sperm [MLsp] R 80%, and relative demethylation

level in WT zygotes [RDLWT] R 0.3, where RDLWT is defined as

[MLSp – MLWT]/MLSp). We then focused on Tet3-dependent de-

methylated CpGs, which showed lower RDL values in maternal

KO zygotes than in WT (RDLCKO/RDLWT % 0.6, n = 10,559),

and then examined the MLs of blastocyst embryos (Figure 4A).

Interestingly, the hypermethylated CpG sites in maternal KO

zygotes became drastically hypomethylated at the blastocyst

stage, and the extent of the methylation difference between

WT and maternal KO was much less obvious (Figures 4A and

4B), suggesting that demethylation of these loci takes place

independently of maternal Tet3. These results imply that even

in the absence of Tet3-mediated oxidation at zygotes, the pa-

ternal genome can be globally hypomethylated by the blastocyst

stage, which may explain why Tet3-mediated paternal 5mC

oxidation is dispensable for later development.

DISCUSSION

Based on the previous report that maternal depletion of Tet3

blocks paternal 5mC oxidation and leads to embryonic suble-

thality (Gu et al., 2011), it has been believed that Tet3-mediated

paternal 5mC oxidation plays an important role in mouse devel-

opment (Kohli and Zhang, 2013; Messerschmidt et al., 2014;

Pastor et al., 2013; Seisenberger et al., 2013; Wu and Zhang,

2014). However, because the progenies of Tet3 CKO females

are heterozygous, it remained to be determinedwhether the sub-

lethality was due to Tet3 haploinsufficiency or defective paternal

5mC oxidation. In this study, we explored these two possibilities

and found that haploinsufficiency, but not defective paternal

5mC oxidation, is the cause of this phenotype. The notion that

proper expression of Tet3 is required for neonatal growth is

consistent with previous findings that Tet3 null mice exhibit
C

neonatal lethality (Gu et al., 2011; Wang et al., 2013). Future

studies should reveal why Tet3 is required for neonatal growth.

The mammalian zygote is one of the best in vivo models for

studying the mechanism of DNA demethylation. Interestingly, a

recent study suggested that 5mCs within certain genomic loci

are converted to unmodified cytosines in mouse zygotes in a

Tet3-dependent but thymine DNA glycosylase (TDG)-indepen-

dent manner, implying the existence of an undefined demethyla-

tion pathway (Guo et al., 2014a). To reveal such a mechanism, a

hypothesis-driven candidate approach will be required because

genome-wide screening is difficult to perform in zygotes (Gkoun-

tela and Clark, 2014). However, there may be many candidate

factors, including deaminases, base excision repair enzymes,

decarboxylases, and the elongator, that could be involved in

active DNA demethylation (Messerschmidt et al., 2014; Wu

and Zhang, 2014; Wu and Zhang, 2010). Since Tet3-mediated

5mC oxidation was thought to be required for development,

only genes known to be relevant to development might have

been listed as candidates. Nevertheless, our study indicates

that such factors are not necessarily essential for development,

and thus nonessential genes should also be considered.

We and others recently reported that Tet3 oxidizes not only the

paternal genome but also the maternal genome, although to a

lesser extent (Guo et al., 2014a; Shen et al., 2014). Because

our NT experiment could not elucidate the role of maternal

5mC oxidation, we cannot exclude the possibility that Tet3-

mediated maternal 5mC oxidation may play a role in develop-

ment. Nevertheless, this possibility is less likely given that the

phenotypes of maternal KO embryos, in which both paternal

and maternal 5mC oxidations are defective, are not more severe

than those of the Het embryos, in which 5mC oxidation takes

place in both genomes normally, derived from Het males or fe-

males crossed with WT (compare Figures 1D and 2C).

We found that the paternal genome can be largely hypomethy-

lated by the blastocyst stage in the absence of maternal Tet3

(Figure 4). This demethylationmight be achieved byDNA replica-

tion-dependent passive dilution of 5mC during preimplantation

development. This notion is supported by our recent observation

that Tet3-dependent demethylated regions can partially undergo

replication-coupled demethylation at the one-cell stage (Shen

et al., 2014). Thus, consecutive passive dilutions during preim-

plantation development might compensate for the loss of

maternal Tet3, leading to hypomethylation of the paternal

genome. Alternatively, Tet1 and Tet2 might also contribute to

DNA demethylation, as both begin to be expressed after the

two-cell stage (Iqbal et al., 2011). It is also possible that a Tet-in-

dependent demethylation pathway is involved in the observed

compensation (Wang et al., 2014). Further studies will be needed

to identify all the players involved in DNA demethylation and to

address the biological significance of global DNA demethylation

in preimplantation embryos.

EXPERIMENTAL PROCEDURES

Mice

All animal studies were performed in accordance with the guidelines of the

Institutional Animal Care and Use Committee at Harvard Medical School.

Tet3 CKO mice were generated as described previously (Shen et al., 2014).

Tet3 Het and WT mice were obtained by crossing CKO ([Zp3Cre, Tet3f/f] or
ell Reports 10, 463–470, February 3, 2015 ª2015 The Authors 467
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Figure 3. Tet3-Mediated Paternal 5mC Oxidation Is Dispensable for Mouse Development

(A) Schematic presentation of the pronuclear transfer (NT) procedure. The recipient cytoplasm was prepared by removing the paternal pronucleus from PN5-

stage WT zygotes. Donor pronuclei were isolated from zygotes obtained from CKO [Zp3Cre, Tet3f/f] or WT [Tet3f/f] females mated with WT males. Fusion with the

recipients yields genetically WT zygotes with defective paternal 5mC oxidation (NT-KO) or control zygotes (NT-WT). Gray, maternal pronuclei; green, paternal

pronuclei with defective 5mC oxidation; red, paternal pronuclei with oxidized 5mC; +, Tet3WT allele; –, Tet3 KO allele. Images at bottom represent manipulation

of NT. Black arrowheads indicate paternal pronuclei. Scale bar represents 100 mm.

(B) Representative images of two-cell embryos stained with anti-5hmC antibody. WT and CKO embryos were prepared as positive and negative controls,

respectively. Scale bar represents 20 mm. The graph at right indicates quantification of the 5hmC signal. The value of WT embryos was set as 1.0. The number of

embryos examined is indicated below the bars. Error bars, SD.

(C) Representative images of embryos and placentae from a single litter of NT-WT and NT-KO at E19.5. Scale bars represent 20 mm.

(D) Percentage of living (blue) and absorbed (orange) embryos at E19.5. Implantation sites without visible embryos were counted as ‘‘absorbed.’’ Dead bodies

were not observed in both groups. The total number of embryos examined is indicated below the bars. The total number of litters is indicated within parentheses.

p, c2 test.

(legend continued on next page)

468 Cell Reports 10, 463–470, February 3, 2015 ª2015 The Authors



A B Figure 4. Effect of Maternal Tet3 KO on the

Paternal Methylome

(A) Heatmap of 10,559 SNP-tracked paternal CpG

sites that are methylated in sperm (MLSp R 80%)

and demethylated after fertilization in a Tet3-

dependent manner (RDLWT Zygote R 0.3 and

RDLCKO Zygote/RDLWT Zygote % 0.6). ML, methyl-

ation level; RDL, relative demethylation level,

defined as [(MLSp – MLWT Zygote)/MLSp]. CKO, Tet3

maternal KO.

(B) Box plot of MLs. The red line represents the

median. Boxes and whiskers represent the 25th/

75th and 2.5th/97.5th percentiles, respectively.

See also Table S6.
[Zp3Cre, Tet3f/–]) females with C57BL/6J males, followed by crosses of the Het

progenies with C57BL/6J mice. The genotyping primer sequences were re-

ported previously (Shen et al., 2014). The day when a vaginal plug appeared

at noon was defined as E0.5. At E19.5, the progenies were collected by dis-

secting pregnant females that had been injected with 0.2 ml of 10 mg/ml pro-

gesterone (Sigma-Aldrich) at E17.5 and E18.5. For neonatal and postnatal

growth, we took daily recordings of delivery and viability from natural mating

pairs with C57BL/6J mice.

Pronuclear Transfer

For preparation of donor zygotes, 8-week-old CKO [Zp3Cre, Tet3f/f] or WT

[Tet3f/f] females were superovulated by injecting 7.5 I.U. of PSMG (Millipore)

and hCG (Millipore) followed by mating with C57BL/6J males. For preparation

of recipient zygotes, 8-week-old B6D2F1 females were superovulated simi-

larly and mated with C57BL/6J males. At noon of day E0.5, PN2-3 zygotes

were collected and cultured in KSOM (Millipore) in a humidified atmosphere

of 5%CO2/95% air at 37.8�C. Five hours later, zygotes reached the PN5 stage

and were then transferred into M2 media containing 5 mM cytochalasin B

(Sigma-Aldrich). Zona pellucidae were cut by a Piezo impact-driven microma-

nipulator (Prime Tech). The paternal pronuclei were removed from the recipient

zygotes, and the remaining cytoplasms containing maternal pronuclei served

as recipients. Parental pronuclei were distinguished by the distance from the

second polar body and by the pronuclear size. Next, paternal pronuclei were

isolated from PN5-stage WT or CKO zygotes and fused with the recipients

by using sendai virus (HVJ; Cosmo-bio) as described previously (Inoue et al.,

2008).

Two-cell-stage embryos were transferred to the oviducts of pseudopreg-

nant (E0.5) ICR females. The pups were recovered by C-section on the day

of delivery (E19.5) and nursed by lactating ICR females. After they grew to

the adulthood, each of three NT-KO males and females were mated with

C57BL/6J mice for fertility tests, and all gave 7–11 pups.

Immunostaining

Tet3, 5mC, and 5hmC staining was performed as described previously (Shen

et al., 2014).

RRBS

MII oocytes were collected from 8-week-old superovulated females. They

were transferred into HTF medium supplemented with 10 mg/ml BSA

(Sigma-Aldrich) and inseminated with activated spermatozoa collected from
(E) Box plot representations of body and placental weight.Middle lines in the boxe

100th percentiles, respectively. p, two-tailed Student’s t test.

(F) Percentage of progenies that were alive (blue) or dead within 3 days after birth (

test.

(G) Growth curve of progenies. The number of pups examined is indicated in pa

(H) Representative image of an adult NT-KO female with its pups after crossing

See also Table S5.

C

the caudal epididymides of adult CAST/EiJ males. Five hours after fertilization,

the zygotes were transferred into KSOM. Zygotes and blastocysts were

collected at 13 and 96 hr postfertilization, respectively. Biological duplicates

for each sample were collected, with each sample containing 40–50 zygotes

or four blastocysts. Sperm genomic DNA was extracted from CAST males

as described previously (Weyrich, 2012).

RRBS analyses were performed as described previously (Shen et al., 2014)

and sequencing reads were mapped to the mouse genome (mm9) using Bis-

mark v0.10.1 (BabrahamBioinformatics) after adaptor trimming by TrimGalore

(Babraham Bioinformatics) with the ‘‘–rrbs’’ option. Paternal reads were ex-

tracted from the total mapped reads by SNPs between CAST and C57BL/6J

mice. The ML of each covered cytosine in CpG context was calculated by

dividing the number of reported C with the total number of reported C and T.

Only CpG sites that were commonly covered by at least five reads in all sam-

ples were used for the subsequent analyses.
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