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A role for the elongator complex in zygotic paternal
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The life cycle of mammals begins when a sperm enters an egg.
Immediately after fertilization, both the maternal and paternal
genomes undergo dramatic reprogramming to prepare for the
transition from germ cell to somatic cell transcription programs1.
One of the molecular events that takes place during this transition
is the demethylation of the paternal genome2,3. Despite extensive
efforts, the factors responsible for paternal DNA demethylation
have not been identified4. To search for such factors, we developed
a live cell imaging system that allows us to monitor the paternal
DNA methylation state in zygotes. Through short-interfering-
RNA-mediated knockdown in mouse zygotes, we identified Elp3
(also called KAT9), a component of the elongator complex5, to be
important for paternal DNA demethylation. We demonstrate that
knockdown of Elp3 impairs paternal DNA demethylation as
indicated by reporter binding, immunostaining and bisulphite
sequencing. Similar results were also obtained when other
elongator components, Elp1 and Elp4, were knocked down.
Importantly, injection of messenger RNA encoding the Elp3
radical SAM domain mutant, but not the HAT domain mutant,
into MII oocytes before fertilization also impaired paternal DNA
demethylation, indicating that the SAM radical domain is involved
in the demethylation process. Our study not only establishes a
critical role for the elongator complex in zygotic paternal genome
demethylation, but also indicates that the demethylation process
may be mediated through a reaction that requires an intact radical
SAM domain.

Global removal of the methyl group from 5-methyl-CpG (5mC) of
DNA has been observed in at least two stages of embryogenesis. One
occurs in zygotes when the paternal genome is preferentially
demethylated2,3; however, imprinted genes are resistant to this wave
of DNA demethylation6. Instead, this group of genes is actively
demethylated in primordial germ cells from embryonic day (E)10.5
to E12.5, which results in the establishment of gender-specific methy-
lation patterns7. Given the importance of active DNA demethylation
in embryogenesis, reprogramming, cloning and stem cell biology, the
identification of the putative demethylase has been one of the major
focuses in the field4.

The first molecule for which a claim was made for DNA demethy-
lase activity was the methyl-CpG binding protein Mbd2 (ref. 8).
However, Mbd2 is not required for paternal genome demethylation,
as normal demethylation is still observed in Mbd2-deficient zygotes9.
Several recent studies in plants10,11, zebrafish12 and mammalian cells13

have suggested that active DNA demethylation can occur through
various DNA repair mechanisms. However, it is not known whether
any of these proteins affect paternal genome demethylation.

Both Gadd45a and Gadd45b have been implicated in DNA
demethylation in somatic cells13,14, but the role of Gadd45a in DNA
demethylation has been challenged by some recent studies15,16. To

determine whether Gadd45 proteins are involved in paternal DNA
demethylation in zygotes, we performed quantitative polymerase
chain reaction with reverse transcription (RT–qPCR) and found that
Gadd45b is the most highly expressed gene among the Gadd45 family
members in zygotes (Supplementary Fig. 1a). Because Gadd45b
has been shown to affect DNA demethylation in mature non-
proliferating neurons14, we examined whether loss of Gadd45b func-
tion affects zygotic paternal DNA demethylation. Immunostaining
with the 5mC antibody indicates that paternal DNA demethylation is
not affected by Gadd45b knockout, indicating that Gadd45b is not
required for paternal DNA demethylation (Supplementary Fig. 1b).

To facilitate the identification of factors involved in paternal DNA
demethylation, we attempted to develop two molecular probes (Sup-
plementary Fig. 2a, b). The methyl-CpG-binding domain (MBD) of
Mbd1 and the CxxC domain of Mll1 have high affinity towards
methyl-CpG and non-methyl-CpG, respectively17,18. Expectedly,
EGFP–MBD exhibited a nuclear dotted pattern, whereas CxxC–
EGFP exhibited diffuse nuclear staining in wild-type mouse embry-
onic fibroblasts (MEFs; Supplementary Fig. 2c, d). In contrast,
almost 100% of Dnmt1-null MEFs that lack CpG methylation exhi-
bited punctate nuclear localization of CxxC–EGFP. Unexpectedly,
the nuclear dotted pattern of EGFP–MBD was still maintained in
,60% of the double knockout cells (Supplementary Fig. 2c, d).
This result indicates that when compared to EGFP–MBD, CxxC–
EGFP is the better probe whose subcellular localization pattern can
reflect the DNA methylation state. We further confirmed the utility
of the CxxC–EGFP reporter by demonstrating that 5-Aza-dC-
mediated DNA demethylation resulted in a clear increase in the
number and intensity of GFP bright dots in NIH3T3 cells (Sup-
plementary Fig. 2e).

We next tested whether the CxxC–EGFP probe can accurately
‘report’ paternal genome demethylation. Because injected plasmid
DNA is transcriptionally inactive in 1-cell zygotes, we adapted an
mRNA injection technique that allows for visualization of molecular
events in the mammalian zygote as early as 3 h after introduction19.
We generated poly(A) mRNAs for the CxxC–EGFP as well as H2B–
mRFP1 (monomeric red fluorescent protein 1) by in vitro transcrip-
tion19 (Supplementary Fig. 2b). Using the procedure outlined in
Supplementary Fig. 3a, the mRNAs were co-injected into the zygotes
immediately after in vitro fertilization. Time-lapse imaging of the
injected zygotes indicates that CxxC–EGFP is visible at the pronu-
clear stage 2 (PN2) and accumulates throughout the PN3–4 and PN5
stages in the paternal pronucleus (Supplementary Fig. 3b). The
dynamics of the paternal pronuclear CxxC–EGFP accumulation
mimic paternal DNA demethylation dynamics reported previ-
ously2,3. On the basis of this result, we conclude that paternal genome
demethylation can be monitored by injection of CxxC–EGFP mRNA
in zygotes.
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We next asked whether short interfering RNA (siRNA)-mediated
depletion of candidate mRNAs in the oocytes could affect paternal
DNA demethylation in zygotes. We first determined the optimal
siRNA concentration and the time needed for injected siRNA to
become effective using siRNA against lamin A/C. The tests estab-
lished that effective knockdown required a minimum dose of 2mM
and incubation time of 8 h before intracytoplasmic sperm injection
(ICSI). On the basis of the results from these tests, we established a
modified experimental procedure (Fig. 1a). To facilitate early stage
pronucleus identification (PN0–2), we also replaced H2B–mRFP1
with H3.3–mRFP1 as H3.3 has been shown to be preferentially
deposited in the paternal pronucleus immediately after fertilization20.
This modified experimental scheme allows us to monitor H3.3
deposition and DNA demethylation simultaneously with time-lapse
imaging. A representative snapshot of the various pronucleus stages
with the injection of a scrambled siRNA control is presented in
Fig. 1b. This time-lapse imaging system coupled with siRNA knock-
down allowed us to test a dozen candidate genes selected based on
several criteria that include: (1) their expression in zygotes; (2) the
domain/structure motifs they contain; and (3) their potential in
catalysing DNA demethylation. Using these criteria, we designed
siRNAs targeting a dozen candidate genes. We achieved a knockdown
efficiency of at least 80% for six of the candidate genes that include
Cyp11a1, Smc6-like, Brm (also called Smarca2), Alkbh5, Nfu1 and
Elp3 (Supplementary Fig. 4a). We also attempted to knockdown the
recently identified 5mC hydroxylase Tet1 (ref. 21) but failed to
achieve high efficiency. With the exception of Elp3 knockdown
(Fig. 1c), none of the other knockdowns altered the preferential
distribution of the reporter to the paternal pronucleus (Supplemen-
tary Fig. 4b). To verify this preliminary observation, we performed
immunostaining using the anti-5mC antibody. Results shown in
Fig. 2a clearly demonstrate that knockdown of Elp3 prevents paternal
DNA demethylation. Furthermore, a second siRNA targeting a dif-
ferent region of Elp3 also resulted in a similar effect (Fig. 2a).

Although preferential demethylation of the paternal DNA in zygotes
is a general phenomenon, the extent of demethylation of individual
zygotes is variable (Supplementary Fig. 5). Therefore, we quantified the
effect of Elp3 knockdown on paternal DNA demethylation by analysing
a large number of zygotes. After determination of the highest 5mC
intensity of the Z-section for both male and female pronucleus

(Supplementary Fig. 6a), a ratio of paternal over maternal 5mC
intensity was determined for each zygote (Supplementary Fig. 6b).
Analysis of 80 PN4–5 stage zygotes with control injection results in
an average ratio of 0.501. However, this ratio is significantly increased
(average 0.742, P 5 8.14 3 1027) with injection of siRNAs that target
Elp3 (Fig. 2b). These results indicate that Elp3 knockdown significantly
impairs paternal DNA demethylation as judged by 5mC antibody
staining.

To provide direct evidence that Elp3 knockdown affects paternal
DNA demethylation, we evaluated DNA methylation levels by bisul-
phite sequencing. Previous studies indicated that the transposable
elements Line1 and Etn (early retrotransposons) are actively
demethylated in zygotes22,23. We therefore asked whether knockdown
of Elp3 would impair their demethylation. To this end, we injected
siRNAs that target Elp3 before ICSI and isolated paternal pronuclei at
the PN3–4 stages when DNA demethylation is at the beginning or is
still occurring. We note that this is the latest time that we can still
isolate the paternal pronuclei without co-isolating the maternal pro-
nuclei, as the two pronuclei become too close at the PN5 stage.
Despite the fact that demethylation is far from completion at the
PN3–4 stage, the effect of Elp3 knockdown on Line1 and Etn
demethylation is still obvious (Fig. 2c). However, the methylation
state of the imprinted H19 differential methylated region (DMR) or
an unmethylated control, Epha7, is not affected by Elp3 knockdown
(Supplementary Fig. 7), indicating that the observed effect on Line1
and Etn is specific.

Elp3 is a component of the elongator complex that was initially
identified based on its association with the RNA polymerase II holoen-
zyme involved in transcriptional elongation. Subsequent studies have
revealed that the elongator complex has diverse functions that include
cytoplasmic kinase signalling, exocytosis and transfer RNA modifica-
tion5. The yeast elongator complex is composed of six subunits, Elp1–6,
which includes the histone acetyltransferase (HAT) Elp3 (ref. 24). The
human elongator purified from HeLa cells is also composed of six
subunits although the identities of Elp5 and Elp6 are unknown25. To
determine whether knockdown of other elongator subunits in oocytes
also prevents paternal DNA from demethylation, we performed knock-
down on two additional elongator subunits, Elp1 and Elp4. Results
shown in Fig. 3 demonstrate that knockdown of these two subunits
also significantly affects paternal genome demethylation. Collectively,
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Figure 1 | Knockdown of Elp3 prevents preferential incorporation of the
CxxC–EGFP reporter into the paternal pronucleus. a, Scheme of the
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Figure 2 | Knockdown of Elp3 impairs DNA demethylation in the paternal
pronucleus. a, siRNA-mediated knockdown of Elp3 resulted in increased
5mC staining (green) in the PN5 paternal pronucleus. H3.3–mRFP1 (red)
serves as a nuclear marker. The H3.3–mRFP1 signal is more intense in male
pronuclei than in female pronuclei owing to preferential incorporation of
H3.3 to the paternal genome. Male and female symbols indicate male
pronucleus and female pronucleus, respectively. PB, polar body. Scale bar,
25 mm. b, Quantification of the ratio (male/female) of 5mC intensity in Elp3

knockdown and control groups. Each data point represents a zygote. Red
bars represent the average ratio of each group. The statistics of the injections
are presented in the table. c, Bisulphite sequencing of Line1-59 and Etn
indicates that knockdown of Elp3 impairs paternal DNA demethylation.
Open circles and filled circles represent unmethylated and methylated CpG,
respectively. Each line represents an individual clone. A total of 10 CpGs and
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knockdown of Elp1 and Elp4 resulted in increased 5mC staining (green) in
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the table.
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these results indicate that paternal DNA demethylation in zygotes
requires the elongator complex.

In addition to a HAT domain, Elp3 also contains a domain that
shares significant sequence homology with the radical SAM domain
present in the radical SAM superfamily (Fig. 4a). Members of this
superfamily contain an iron-sulphur (Fe-S) cluster and use
S-adenosylmethionine (SAM) to catalyse a variety of radical reac-
tions26. Interestingly, a recent study confirmed the presence of this
Fe4S4 cluster in the Elp3 protein of the bacterium Methanocaldococcus
jannaschii27. To determine whether any of the two conserved
domains of the mouse Elp3 is required for paternal DNA demethyla-
tion, we used a dominant-negative approach and generated mRNAs
that harbour mutations in the cysteine-rich motif and the HAT
domain, respectively (Fig. 4a). Injection of the cysteine mutant
mRNA, but not the wild-type or HAT mutant mRNA, significantly
impaired paternal DNA demethylation (Fig. 4b, c), indicating that
the cysteine-rich motif, but not the HAT domain, is important for
paternal DNA demethylation.

Using a live cell imaging reporter system coupled with siRNA knock-
down, we uncovered a critical function of the elongator complex in
paternal DNA demethylation. Several lines of evidence support our
conclusion. First, three independent assays (reporter localization,
5mC staining, bisulphite sequencing) indicate that knockdown of
Elp3 impairs paternal DNA demethylation (Figs 1 and 2). Second,
knockdown of additional components of the elongator complex,
Elp1 and Elp4, also impaired paternal DNA demethylation (Fig. 3).
Third, a dominant-negative approach identified the radical SAM
domain, but not the HAT domain, of Elp3 to be critical for the
demethylation to occur (Fig. 4). Consistent with the involvement of
the elongator complex in zygote demethylation, mRNA levels of Elp1–4
are upregulated 3–9-fold in the PN1–2 stages before the start of paternal
DNA demethylation at PN3 (Supplementary Fig. 7). Considering the
fact that it takes ,3 h for injected mRNA to be expressed, the upregula-
tion of the Elp mRNA levels at PN1–2 stages is consistent with

demethylation of the paternal DNA at PN3–5 stages. Although the
exact molecular mechanism by which the elongator complex partici-
pates in the demethylation process has yet to be determined, the
demonstration that a specific protein complex is involved in paternal
genome demethylation in zygotes has set the stage for further studies.
The fact that the radical SAM domain is required for demethylation to
occur points to a potential mechanism that involves the generation of a
powerful oxidizing agent, 59-deoxyadenosyl radical, from SAM.
59-Deoxyadenosyl radical could then extract a hydrogen atom from
the methyl group of 5mC to generate 5mC radical for subsequent
reactions. Although this potential mechanism is attractive, currently
we do not have evidence indicating that Elp3 directly acts upon DNA as
a DNA demethylase. We note that reconstitution of the enzymatic
activity may not be trivial, as the maternal genome in the same zygote
is not subject to demethylation, indicating that certain features of the
paternal genome might be required for the demethylation reaction to
occur. Regardless of how the elongator complex participates in the
demethylation process, our studies not only uncover a novel function
for the elongator complex, but also set the stage for understanding the
functional significance of paternal genome demethylation.

METHODS SUMMARY
Oocyte/zygote preparation, 5mC staining and time-lapse imaging. MII

oocytes, collected from female BDF1 mice treated with pregnant mare serum

gonadotrophin (PMSG; Harbour-UCLA) and human chorionic gonadotrophin

(hCG; Sigma Aldrich), were cultured in M16 medium (EmbryoMax, Millipore)

or Chatot–Ziomek–Bavister (CZB) medium at 37 uC with 5% CO2 before being

used in experiments. For 5mC staining, zygotes were fixed with 4% para-

formaldehyde and then permeabilized with 0.4% Triton X-100 for 30 min at

room temperature. Cells were then washed with PBS containing 0.05%

Tween20 (PBST), treated with 4 N HCl for 30 min, and then neutralized with

0.1 M Tris-HCl (pH 8.5) for 10 min before being washed with PBST containing

0.5 M NaCl. After blocking with 1% BSA in PBST, cells were incubated with anti-

5mC antibody (Eurogentic) for 0.5–1 h at 37 uC, and the signal is detected by

fluorescein isothiocyanate (FITC)-conjugated donkey anti-mouse IgG (Jackson
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Figure 4 | Mutation of the cysteine-rich radical SAM domain of Elp3
impairs paternal DNA demethylation. a, Schematic representation of wild-
type and mutant mElp3. The conserved domain (CD) of Elp3 protein
sequences from NCBI are aligned with Elp3 sequences from budding yeast
and mouse. Conserved amino acid residues are colour coded in red. Lower-
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Immunoresearch). Fluorescent images and time-lapse imaging were taken using
a confocal microscope with a spinning disk (CSU-10, Yokogawa). Images were

acquired as multiple 2 mm Z-axis intervals, and stacked images were reconsti-

tuted using Axiovision (Zeiss) or MetaMorph (Universal Imaging Co).

mRNA and siRNA injection, RT–qPCR and bisulphite sequencing. About

3–5 pl of siRNAs (2mM) purchased from Ambion (Supplementary Table 1) were

co-injected with H3.3–mRFP1 (25mg ml21) and CxxC–EGFP mRNAs

(25mg ml21). After 8 h of cultivation, cells were subjected to ICSI. To determine

knockdown efficiency, RNA isolated from 10–20 zygotes at PN4–5 stage was used

for RT–qPCR using the SuperScript III cDNA synthesis kit and SYBR GreenER

(Invitrogen). For bisulphite sequencing, Elp3 or control siRNA was co-injected

with H3.3–mRFP1 mRNA to MII oocytes followed by ICSI. Male pronuclei were

harvested at PN3–4 stages. Forty-three and forty-seven male pronuclei from

control or siElp3-injected zygotes were used for bisulphite conversion using the

EZ DNA Methylation-Direct Kit (Zymo Research), respectively.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
DNA constructs. cDNA that encodes the CxxC domain (amino acids 1144–

1250) of mouse Mll-1 (NCBI accession NP_005924) was cloned by RT–PCR.

cDNA for H3.3 was provided by Y. Nakatani28. These cDNAs were subcloned

into a pcDNA3.1-poly(A)83 vector with a C-terminal EGFP or mRFP1.

pcDNA3.1-EGFP-MBD-poly(A)83 and pcDNA3.1-H2B-mRFP1-poly(A)83

were previously described19. These plasmids were used for in vitro transcription

using the RiboMAX Large Scale RNA production System T7 (Promega).

Synthesized mRNAs were purified with Illustra MicroSpin G-25 columns (GE

Healthcare) before being used for injection. The mouse Elp3 cDNA was amp-

lified by RT–PCR and was subcloned into a pCDNA3.1-poly(A)83 vector with a

Flag tag at the N terminus. Both the cysteine and the HAT mutants of Elp3 were

generated by PCR-based mutagenesis and confirmed by sequencing. The primers

used for generation of these mutants were as follows: Cys-F, 59-ACAGGGAAT

ATATCTATATACTCCCCCGGAGGACCTG-39; Cys-R, 59-CAGGTCCTCCGG

GGGAGTATATAGATATATTCCCTGT-39; HAT-F, 59-AATTTCAGCATCAG

TTCGCCTTCATGCTGCTGATGG-39; HAT-R, 59-CCATCAGCAGCATGAAG

GCGAACTGATGCTGAAATT-39. The underlined nucleotides are substituted

in the mutants.

Mice and oocyte/zygote preparation. All animal experiments were performed

according to procedures approved by the Institutional Animal Care and Use

Committee (IACUC protocol 07-006) and the Animal Experiment Handbook at

the Kobe Center for Developmental Biology (RIKEN). Four-to-twelve-week-old

BDF1 mice (C57BL6 3 DBA2, Charles River or Japan SLC) were used for all the

experiments. MII oocytes, collected from female mice treated with PMSG

(Harbour-UCLA) and hCG (Sigma Aldrich), were cultured in M16 medium

(EmbryoMax, Millipore) or CZB medium at 37 uC with 5% CO2 before being

used in experiments. Gadd45b-deficient zygotes were obtained by mating of

Gadd45b knockout mice pairs14.

5mC staining and time-lapse imaging. Zygotes were fixed with 4% para-

formaldehyde for at least 1.5 h at 4 uC. After washing with PBS, the zygotes were

permeabilized with 0.4% Triton X-100 for 30 min at room temperature. Cells

were then washed with PBS containing 0.05% Tween20 (PBST) and treated with

4 N HCl for 30 min at room temperature before being neutralized with 0.1 M

Tris-HCl (pH 8.5) for 10 min, and then washed with PBST containing 0.5 M

NaCl. In the following procedure, all solutions and buffers contain 0.5 M

NaCl. After blocking with 1% BSA in PBST, cells were incubated with anti-

5mC antibody (1:100 dilution, Eurogentic) for 0.5–1 h at 37 uC, and the positive

signal was detected by FITC-conjugated donkey anti-mouse IgG (Jackson

Immunoresearch). Fluorescent images were taken using a confocal microscope

with a spinning disk (CSU-10, Yokogawa). The same confocal microscope sys-

tem, combined with an on-stage incubation chamber, was used for time-lapse

imaging. For both live and fixed zygotes, images were acquired as multiple 2mm

Z-axis intervals, and stacked images were reconstituted using Axiovision (Zeiss)

or MetaMorph (Universal Imaging Co). The intensity of 5mC in each pronu-
cleus was calculated by MetaMorph as shown in Supplementary Fig. 6.

mRNA and siRNA injection, RT-qPCR and bisulphite sequencing. About

3–5 pl of siRNAs (2mM) purchased from Ambion (Supplementary Table 1) were

co-injected with H3.3–mRFP1 (25mg ml21) and CxxC–EGFP mRNAs

(25mg ml21) simultaneously. After 8 h of cultivation, cells were subjected to

ICSI (Fig. 2a). For determination of knockdown efficiency, RNA isolated from

10–20 zygotes at PN4–5 stage was used for reverse transcription using SuperScript

III Cell Direct cDNA synthesis kit (Invitrogen) followed by quantitative PCR

(qPCR) using SYBR GreenER (Invitrogen). To determine the expression dynamics

of Elp1–4 during pronuclear stages (Supplementary Fig. 6), MII oocytes were

subjected to in vitro fertilization. Groups of zygotes (100–120) were collected at

4 h after insemination (PN1–2), and then every 2 h (PN3, 4, 5, respectively) fol-

lowed by acidic Tyrode’s treatment to remove cumulus cells. The extracted RNAs

were subject to reverse transcription. Results were normalized with 18S rRNA as a

standard. Primer sequences for qPCR are listed in Supplementary Table 2.

For bisulphite sequencing, either Elp3 siRNA or control siRNA was co-

injected with H3.3–mRFP1 mRNA to MII oocytes followed by ICSI after 6–8 h

of siRNA/mRNA injection. Male pronuclei, which were distinguished from
female pronuclei based on their size, distance from polar bodies, and more

intense H3.3–mRFP1 fluorescence, were harvested from zygotes of PN3–4 stages

by breaking the zona and cytoplasm using Piezo drive (Prime Tech) and aspir-

ating using a micromanipulator. Forty-three male pronuclei from control

siRNA-injected zygotes and 47 male pronuclei from siElp3-injected zygotes were

collected and subjected to bisulphite conversion using the EZ DNA Methylation-

Direct Kit (Zymo Research). Nested PCR was performed using Platinum Taq DNA

polymerase (Invitrogen) or ExTaq HS (TaKaRa). The sequences of the PCR primers

and PCR conditions are listed in Supplementary Table 3 (refs 29, 30).

Cell culture and transfection. Immortalized p53 knockout and p53/Dnmt1 double

knockout MEFs were previously described31. The knockout MEFs, double knock-

out MEFs, and NIH3T3 cells were maintained in DMEM supplemented with 10%

FBS. pcDNA3-EGFP-pA83 plasmids containing the MBD domain and CxxC motif

were transfected using Fugene6 (Roche). NIH3T3 cells that stably express CxxC–

EGFP were selected under 1 mg ml21 G418. 5-Aza-29deoxycytidine (Sigma

Aldrich) was applied at the concentration of 5mM for 72 h.

28. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3
complexes mediate nucleosome assembly pathways dependent or independent
of DNA synthesis. Cell 116, 51–61 (2004).

29. Opavsky, R. et al. CpG island methylation in a mouse model of lymphoma is driven
by the genetic configuration of tumor cells. PLoS Genet. 3, e167 (2007).

30. Tremblay, K. D., Duran, K. L. & Bartolomei, M. S. A 59 2-kilobase-pair region of the
imprinted mouse H19 gene exhibits exclusive paternal methylation throughout
development. Mol. Cell. Biol. 17, 4322–4329 (1997).

31. Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent
apoptosis and epigenetic deregulation. Nature Genet. 27, 31–39 (2001).
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