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The rate-limiting step in ribosome biogenesis is the

transcription of ribosomal RNA, which is controlled by

environmental conditions. The JmjC enzyme KDM2A/

JHDM1A/FbxL11 demethylates mono- and dimethylated

Lys 36 of histone H3, but its function is unclear. Here,

we show that KDM2A represses the transcription of ribo-

somal RNA. KDM2A was localized in nucleoli and bound

to the ribosomal RNA gene promoter. Overexpression of

KDM2A repressed the transcription of ribosomal RNA in a

demethylase activity-dependent manner. When ribosomal

RNA transcription was reduced under starvation, a cell-

permeable succinate that inhibited the demethylase activ-

ity of KDM2A prevented the reduction of ribosomal RNA

transcription. Starvation reduced the levels of mono- and

dimethylated Lys 36 of histone H3 marks on the rDNA

promoter, and treatment with the cell-permeable succinate

suppressed the reduction of the marks during starvation.

The knockdown of KDM2A increased mono- and dimethy-

lated Lys 36 of histone H3 marks, and suppressed the

reduction of ribosomal RNA transcription under starva-

tion. These results show a novel mechanism by which

KDM2A activity is stimulated by starvation to reduce

ribosomal RNA transcription.
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Introduction

Regulation of cell growth ultimately depends on the control of

new ribosome synthesis (Grummt, 2003). Although the sup-

ply of ribosomal components involves the activities of three

forms of nuclear RNA polymerase (pol I, pol II, and pol III) in

eukaryotic cells, pol I has a central role in the regulation of

ribosome biogenesis (Laferte et al, 2006; Chedin et al, 2007;

Grewal et al, 2007). Pol I transcribes the eukaryotic ribosomal

RNA genes (rDNA) in nucleoli. rDNA code 18S, 5.8S, and

28S ribosomal RNA, which are three of the four structured

RNA molecules constituting the ribosome. These three RNA

result from the processing of one precursor transcript, pre-

ribosomal RNA (pre-rRNA).
Many discoveries about the relationship between chroma-

tin structures and transcription have been made during the

past decade, and several chemical modifications of chromatin

components, including DNA methylation and histone acet-

ylation, have been identified (Berger, 2007). One key compo-

nent of chromatin structures in biological regulation is the

methylation of lysine residues in histone proteins, which has

been vigorously studied over the past several years. Highly

specific enzymes catalysing the synthesis of methyl marks,

as well as proteins recognizing distinct methylated lysine

residues, have been identified. Recently, an increasing

number of histone demethylases, JmjC domain-containing

enzymes, has been discovered and has highlighted the

dynamic nature of the regulation of histone methylation

(Kustatscher and Ladurner, 2007; Stavropoulos and Hoelz,

2007). In addition, the activities of JmjC enzymes require

small molecules, including molecular oxygen, Fe(II), and

a-ketoglutarate (a-KG), as co-substrates (Klose et al,

2006a). Therefore, these substrates and their cognate pro-

ducts, such as the succinate for a-KG, can affect the activities

of JmjC enzymes and the transcription regulated by them.

However, the roles of JmjC enzymes on rDNA chromatin

have not been well studied.
Previously, we identified the JmjC protein Mina53

(Tsuneoka et al, 2002), which is involved in mammalian

cell proliferation. The expression of the mina53 gene is

directly controlled by the oncogene myc (Tsuneoka et al,

2002) and elevated in some types of cancer (Teye et al,

2004, 2007; Tsuneoka et al, 2004; Fukahori et al, 2007;

Ishizaki et al, 2007; Zhang et al, 2008; Komiya et al, 2009).

Mina53 exists in nucleoli (Tsuneoka et al, 2002) and binds to

nucleolar proteins (Eilbracht et al, 2005). However, the sub-

strate of this putative enzyme has not yet been identified, and

the role of JmjC proteins including Mina53 in ribosome

biogenesis is still unclear.
To determine whether the dynamics of histone methylation

mediated by demethylases affect ribosome biogenesis, we

first attempted to identify a histone demethylase containing a

JmjC domain that regulates rDNA transcription. For this, we

searched the database of the B700 human nucleolar proteins

that have been identified using high sensitivity mass spectro-

metry (Andersen et al, 2005), and found a candidate JmjC

enzyme, KDM2A. It had been reported that KDM2A had

histone demethylase activity in vivo on the dimethylated

Lys 36 of histone H3 (H3K36me2) and in vitro on the

monomethylated Lys 36 of histone H3 (H3K36me1) in addi-

tion to H3K36me2 (H3K36me1/2) (Tsukada et al, 2006). The
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amino acid sequence of human KDM2A is 97.4 and 87.0%

identical to those of Mus musculus and Gallus gallus, respec-

tively. These suggest that KDM2A has an essential role in

higher animals, but it is not clear how KDM2A functions and

on which genes. Here, we show that KDM2A represses the

transcription of ribosomal RNA by binding to the rDNA

promoter and demethylating H3K36me1/2, and that its

activity is controlled by succinate.

Results

KDM2A gene encodes two proteins

An antibody was produced against the recombinant poly-

peptide from Leu 763 to Gly 855 of the human KDM2A

protein (Figure 1A). When a human cell lysate was analysed

by western blotting using this KDM2A-specific antibody

(Figure 1A, anti-pan-KDM2A antibody), two bands were

recognized (Figure 1B). The protein with the lower mobility

migrated to the same spot as the polypeptide exogenously

expressed by the human KDM2A cDNA (GenBank Accession

No. NM_012308) (Figure 1C, arrowhead), indicating that this

protein was KDM2A. The protein with the higher mobility

may be a degradation product of KDM2A or an mRNA

product with a shorter ORF coded in the KDM2A gene.

Using high-resolution maps of histone lysine methylations

and pol II across the human KDM2A genome (Barski et al,

2007) and previously deposited sequences of EST clones, we

identified a new mRNA whose transcription started from part

of intron 12 of the KDM2A gene. Finally, we found that in

addition to KDM2A protein, a smaller protein was expressed

by the KDM2A gene (Figure 1A; a detailed description is

included in the Supplementary text and Figure S1 of the

Supplementary data). The protein with higher mobility had

the same mobility as the polypeptide exogenously expressed

from the cDNA encoding the smaller protein (Figure 1C). The

cognate siRNA duplex specific for KDM2A reduced the band

for KDM2A but not the band with the higher mobility

(Figure 1B). These results indicate that the protein with the

higher mobility was produced by mRNA with a shorter ORF

coded in the KDM2A gene. We named the polypeptide

SF-KDM2A (short-form KDM2A), and deposited the sequence

in the GenBank (Accession No. AB490246). SF-KDM2A does

not have a JmjC domain. Although KDM2A possessed

demethylase activity for dimethylated Lys36 histone H3

(H3K36me2) as reported before, SF-KDM2A did not

(Supplementary Figure S2). These results suggest that SF-

KDM2A has a different function from KDM2A. To investigate

the specific role of histone lysine methylation on the rDNA

chromatin, we focused this study on KDM2A.

KDM2A is localized in nucleoli and binds to ribosomal

RNA gene promoter

To investigate the subcellular localization of KDM2A, an

antibody specific to KDM2A was produced against a recom-

binant polypeptide whose amino acid sequence was found in

KDM2A but not in SF-KDM2A (Figure 1A). Western blot

analysis showed that the antibody recognized the band that

was reduced by the siRNA for KDM2A (Figure 1B). These

results indicate that this antibody specifically recognized

KDM2A. Immunostaining of human cells with the antibody

produced signals localized in the nucleoli (Figure 2A), and

the siRNA for KDM2A clearly reduced the nucleolar signals.

Most of the signals for KDM2A overlapped with those for

the nucleolar protein nucleolin (Figure 2A). It was reported

that exogenously expressed KDM2A localized throughout

the nucleoplasm as a heterochromatin-associated protein

(Frescas et al, 2008). However, we observed that when

KDM2A was moderately expressed exogenously but not

Figure 1 Proteins encoded by the KDM2A gene. (A) Diagrams of
human KDM2A proteins. KDM2A (upper bar) has 1162 amino acids
and contains the JmjC domain (AA148–316, shown by the white
box) (GenBank Accession No. NM_012308). The numbers with AA
in parentheses show amino acid numbers of KDM2A. SF-KDM2A
(lower bar) has 620 amino acids and corresponds to the polypeptide
from Met 543 to the end of KDM2A (AA 543–1162). The first Met for
SF-KDM2A occurs in exon 14 of the KDM2A gene. The anti-pan-
KDM2A antibody was produced against the polypeptide from Leu
763 to Gly 855 of KDM2A, and recognized both KDM2A and
SF-KDM2A. An anti-KDM2A antibody was produced against the
polypeptide from Ser 360 to Val 451 of KDM2A, and recognized only
KDM2A. KDM2A-specific siRNA is a stealth RNA cognated to a
partial nucleotide sequence for only KDM2A mRNA. The numbers
with nn in parentheses show nucleotide numbers from the A of the
first Met of KDM2A mRNA. (B) Western blot analysis to detect
KDM2A proteins. Breast adenocarcinoma cell line MCF-7 cells were
transfected with KDM2A-specific siRNA (KDM2A siRNA) or control
siRNA. After 48 h culture, cells were lysed, and the extracts were
subjected to western blotting using anti-pan-KDM2A antibody or
anti-KDM2A antibody. The positions of KDM2A and SF-KDM2A are
indicated by an arrowhead and arrow, respectively. The positions of
protein markers with defined molecular weights are indicated on
the right side of the figure. (C) The expression vector for KDM2A,
SF-KDM2A, or the empty control vector was introduced into MCF-7
cells and analysed by western blotting as in (B) using anti-pan-
KDM2A antibody.
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highly overexpressed, the protein was located in nucleoli

(Figure 2B). These results show that KDM2A exists in

nucleoli, although some part of it may exist outside of nucleoli.

Next, the binding of KDM2A to rDNA was investigated.

First, the distribution of histone H3 through rDNA was

examined. Chromatin immunoprecipitation (ChIP) analysis

using anti-H3 antibody indicated that histone H3 was almost

evenly distributed to all regions of rDNA (Supplementary

Figure S3A). The anti-KDM2A antibody collected the frag-

ment of the rDNA promoter (H0 region) (Supplementary

Figure S3B). Enrichment of the fragment is dependent on

KDM2A binding to the rDNA promoter, because the siRNA

for KDM2A abolished recovery of the rDNA fragment by

the anti-KDM2A antibody (Supplementary Figures S3B;

Figure 2C). Additionally, the KDM2A binding detected here

is specific, because the anti-KDM2A antibody hardly enriched

the promoter and exon 5 genomic DNA fragments of the

TATA-binding protein (TBP) gene (Supplementary Figure

S3B). ChIP analysis also showed that the anti-KDM2A anti-

body collected DNA fragments from all regions of rDNA

(Figure 2C). The siRNA for KDM2A abolished recovery of

these DNA fragments, confirming the specific binding of

KDM2A to the rDNA (Figure 2C).

Overexpression of KDM2A represses transcription

of rDNA in demethylase activity-dependent manner

To investigate whether KDM2A regulates rDNA transcription,

KDM2A was exogenously expressed, and the amount of pre-

rRNA was measured by quantitative reverse transcription-

mediated polymerase chain reaction (qRT–PCR). When the

wild-type KDM2A was expressed, the amount of pre-rRNA

was reduced (Figure 3A). KDM2A that had His 212 in the

JmjC domain replaced with Ala (H212A mutant) did not

show the demethylase activity (Tsukada et al, 2006)

(Supplementary Figure S2). The H212A mutant also did not

show a capacity to decrease the amount of pre-rRNA in these

experimental conditions (Figure 3A). It was confirmed that

comparable amounts of the wild-type KDM2A and H212A

mutant were expressed on both RNA and protein levels

(Figure 3A). Ongoing ribosomal RNA synthesis was also

assessed by fluorouridine (FUrd) incorporation in in situ

run-on assays (Kruhlak et al, 2007). Although high FUrd

incorporation at nucleolar sites was observed in cells, ectopic

expression of KDM2A led to a pronounced decrease in

nucleolar FUrd incorporation (Figure 3B and C). This effect

was not observed when Escherichia coli b-galactosidase

targeted to the nucleus (Tsuneoka and Mekada, 1992) was

expressed. Furthermore, the H212A mutant and SF-KDM2A

did not show reduced FUrd incorporation (Figures 3B and C).

These results indicate that the JmjC domain of KDM2A has a

crucial role in the reduction. Together, these results show that

KDM2A represses the transcription of rDNA in a demethylase

activity-dependent manner.

JmjC enzyme is involved in reduction of rDNA

transcription under starvation

Cells of the human breast adenocarcinoma cell line MCF-7

retain a good ability to change the levels of rDNA transcrip-

tion in response to environmental conditions. When MCF-7

cells were cultured in starvation conditions, it was observed

that starvation reduced the amount of pre-rRNA (Figure 4A).

The effects of starvation on ongoing ribosomal RNA synthesis

Figure 2 KDM2A with JmjC domain was localized in nucleoli and
bound to rDNA. (A) MCF-7 cells were transfected with control or
KDM2A siRNA and double-stained with anti-KDM2A (red) and mouse
anti-nucleolin (green) antibodies. The specimen was observed
through a fluorescence and differential interference contrast (DIC)
microscope, and representative images are shown. The anti-KDM2A
antibody produced signals localized in the nuclei (control siRNA).
KDM2A siRNA reduced them. Most of the signals for KDM2A over-
lapped with those for nucleolin (merge). (B) HeLa cells were trans-
fected with an expression vector encoding Flag-tagged KDM2A, and
double-stained with anti-Flag (green) and rabbit anti-nucleolin anti-
bodies (red). Representative images observed using a fluorescence
microscope are shown. Most of the signals for KDM2A are co-
localized with those for nucleolin when KDM2A was moderately
expressed. (C) MCF7 cells were transfected with control or KDM2A
siRNA and analysed by chromatin immunoprecipitation (ChIP) ana-
lysis using the anti-KDM2A antibody. The specific signals for the
binding of KDM2A to DNA (white bars) were detected in all regions of
rDNA genes including the promoter region, and the signals were
reduced when cells were treated with KDM2A siRNA before ChIP
analysis (black bars). The experiments were performed three times,
and mean values with standard deviations are indicated. *Po0.05.
A diagram of human rDNA and the positions of PCR primers used in
this experiment are shown at the bottom of this figure. The numbers
in parentheses show nucleotide numbers in a human ribosomal DNA
complete repeating unit (GenBank Accession No. U13369).
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were also assessed by the FUrd incorporation assays.

Although high FUrd incorporation at nucleolar sites was

observed in cells in growth conditions, starvation clearly

reduced the incorporation (Figure 4B).

To test whether JmjC-domain enzymes are involved in the

reduction of rDNA transcription by starvation, MCF-7 cells

were treated with a compound to inhibit the demethylase

activity of the enzymes. Succinate is produced from a-KG by

the JmjC-domain enzymes during its demethylation reaction

(Figure 4C). As an enzymatic activity depends on the pro-

duct/substrate equilibrium, succinate may inhibit the activity

of the enzymes. Indeed, we observed in vivo inhibition of

the demethylase activity of KDM2A by a cell-permeable

succinate, dimethyl succinate (DMS) (Figure 4D). As shown

in Figure 4A, DMS suppressed the reduction in the amount of

pre-rRNA by starvation. DMS also suppressed the reduction

of FUrd incorporation at nucleolar sites by starvation

(Figure 4B). Together these results suggest that a JmjC-

domain enzyme regulates rDNA transcription during

starvation.

Levels of KDM2A substrates, H3K36me1/2 marks,

are changed on the rDNA promoter during starvation

The effects of starvation and DMS on the levels of substrates

of KDM2A, H3K36me2 marks (Tsukada et al, 2006), were

investigated. As shown in Figure 5A, starvation decreased the

level of H3K36me2 marks on the rDNA promoter, and treat-

ment with DMS increased it during starvation (Figure 5B). As

Figure 3 KDM2A reduced rDNA transcription. (A) MCF-7 cells were transfected with the KDM2A- or H212A mutant-expressing vector or the
empty vector by electroporation and cultured for 2 days. Total RNA was isolated and analysed by quantitative real-time PCR (qRT–PCR) using
specific primers for pre-rRNA, KDM2A, and RNA polymerase II subunit a (Polr2a). The values were normalized using the amounts of mRNA
for Polr2a. The experiments were performed three times, and mean values with standard deviations are indicated. *Po0.05. KDM2A protein
was also detected by western blotting. b-actin was detected as a loading control. The positions of the molecular weight markers are indicated
on the right side of the figure. (B) MCF-7 cells transfected with vector encoding KDM2A, the H212A mutant, SF-KDM2A, or nuclear-localizing
E. coli b-galactosidase. Two days later, cells were cultured with 2 mM FUrd for 15 min, fixed, and stained for FUrd and Flag-tagged KDM2A or
b-galactosidase for assessment by FUrd incorporation assays. The incorporated FUrd (green) and exogenously expressed protein (red) were
observed by a fluorescence microscopy. Representative images are shown. One of the cells with positive signals for exogenous proteins in one
filed is indicated by an arrowhead. (C) Percentages of FUrd-positive cells were calculated in cells that exogenously expressed KDM2A, the
H212A mutant, SF-KDM2A, or nuclear-localizing E. coli b-galactosidase (black bars), or in cells that did not exogenously express each protein
in the same specimen (white bars). The experiments were performed three times, and mean values with standard deviations are indicated.
*Po0.05; #P40.1 (no significant difference).
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starvation and DMS treatment hardly affected the amount of

KDM2A protein (Supplementary Figure S4A) and DMS in-

hibited the demethylase activity of KDM2A (Figure 4D), these

results are consistent with the possibility that KDM2A re-

duces rDNA transcription in an enzyme activity-dependent

manner during starvation. DMS did not increase the level of

H3K36me3 marks in starvation. Interestingly, although

H3K36me1 has not been identified as a substrate of KDM2A

in vivo, starvation decreased the level of H3K36me1 marks on

the rDNA promoter (Figure 5A), and treatment with DMS

increased it (Figure 5B). These results suggest the possibility

that H3K36me1 on the rDNA promoter may also be recog-

nized by KDM2A as a substrate.

An H3K4me3 mark was recently reported to be an active

mark for rDNA transcription and demethylated by a JmjC-

domain demethylase KDM2B/JHDM1B/FbxL10 (Frescas

et al, 2007). However, neither starvation nor DMS affected

the level of H3K4me3 marks in the rDNA promoter region

(Figure 5A and B), suggesting that a JmjC-domain enzyme

demethylating H3K4me3 on the rDNA promoter did not work

during starvation.

Next, we investigated the effects of starvation and DMS on

H3K36 methylation in the other genomic regions. In the TBP

gene, the levels of H3K36me1, H3K36me2, and H3K36me3

(H3K36me1/2/3) marks were higher in a transcribed region

than in the promoter region (Supplementary Figure S4B).

The levels of H3K36me1/2/3 in the two regions of the

TBP gene did not change in response to starvation and

DMS (Supplementary Figure S4B). In rDNA, the levels of

H3K36me1/2/3 in the transcribed regions (H1, H4, and

H13) were not higher than those in the promoter region

(H0) (Supplementary Figure S5). Interestingly, starvation

and DMS did not significantly change the levels of

H3K36me1/2/3 marks in the transcribed and untranscribed

regions (H1, H4, H13, and H27) of rDNA (Supplementary

Figure S5). These results together with the results shown in

Figure 5 suggest that the starvation signal is specifically

transduced to an H3K36me1/2 demethylase located in the

rDNA promoter region.

KDM2A regulates levels of H3K36me1/2 and rDNA

transcription in response to starvation

To directly clarify the involvement of KDM2A in the regula-

tion of H3K36me1/2 marks in the rDNA promoter region and

rDNA transcription under starvation conditions, the expres-

sion of KDM2A was reduced using siRNA for KDM2A. The

Figure 4 Levels of rDNA transcription under starvation conditions in the presence or absence of cell-permeable succinate (DMS). (A) MCF-7
cells were cultured with or without starvation for 9 h. Total RNA was isolated from cells, and analysed by qRT–PCR with specific primers for
pre-rRNA and Polr2a mRNA, as described in Figure 3A. A cell-permeable succinate, DMS, was added at a final concentration of 50 mM during
starvation in the indicated experiments. The experiments were performed three times, and mean values with standard deviations are indicated.
**Po0.01. (B) MCF-7 cells were cultured with or without starvation for 9 h. In the indicated experiments, DMS was added during starvation.
Cells were incubated with 2 mM FUrd for 15 min, fixed, and stained for FUrd. Representative images observed through a fluorescence (FUrd)
and differential interference contrast (DIC) microscopy are shown. (C) KDM2A produces succinate during demethylation. When JmjC-domain
enzymes execute demethylation reactions, they catalyse a-ketoglutarate (a-KG) as a co-substrate to succinate (Tsukada et al, 2006; Klose
et al, 2006a). Thus, excess amounts of succinate may inhibit the activity of JmjC-domain enzymes. (D) MCF-7 cells were transfected with a
Flag-KDM2A expression vector in serum-free DMEM, cultured for 1 day, and further cultured in serum-free DMEM for another day in the
presence or absence of a cell-permeable succinate, dimethyl succinate (DMS) (50 mM). Cells were stained with anti-H3K36me2 (red)- and anti-
Flag (green)-specific antibodies. Representative images observed by a fluorescence and differential interference contrast (DIC) microscopy are
shown. Cells with positive signals for KDM2A are indicated by arrowheads. DMS inhibited the reduction of H3K36me2 marks by the ectopic
expression of KDM2A. Cells with decreased H3K36me2 levels were 59 and 28% of cells in the absence and presence of DMS, respectively.
These results provide in vivo evidence that succinate inhibits the demethylase activity of KDM2A.
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KDM2A knockdown reduced the amount of KDM2A protein

in cells and on the rDNA promoter, and increased the levels of

not only H3K36me2 but also H3K36me1 marks there

(Figure 6A). Importantly, the KDM2A knockdown inhibited

the decrease of H3K36me1/2 levels during starvation, indi-

cating the involvement of KDM2A in the reduction of the

marks under starvation.

The knockdown of KDM2A also resulted in a significant

increase in the rDNA transcription both with and without

starvation (Figure 6B), but its effect was stronger with than

that without starvation (Figure 6C). KDM2A knockdown by

another siRNA also increased the rDNA transcription with

starvation (Supplementary Figure S6), confirming that the

effect of the siRNAs on rDNA transcription under starvation

was caused by the reduction of KDM2A expression. The

KDM2A knockdown completely abolished the increase in

the amount of pre-rRNA because of the treatment with

DMS (Figure 6D), indicating that inhibition of KDM2A is

crucial for the recovery of pre-rRNA synthesis by DMS. These

results show that KDM2A decreases the levels of both

H3K36me1 and H3K36me2 marks on the rDNA promoter

and reduces rDNA transcription under starvation.

KDM2A knockdown increases amount of mature

ribosomal RNA and rate of protein synthesis under

starvation

To investigate whether KDM2A regulates ribosome biogen-

esis, the amounts of mature ribosomal RNA (28S rRNA) and

the rate of protein synthesis were measured. KDM2A knock-

down without starvation rarely or only faintly increased the

amount of pre-rRNA, 28S rRNA, and the rate of protein

synthesis per cell (Figure 7A–C). After 24 h starvation, cells

with the KDM2A knockdown increased the transcription of

pre-rRNA, amounts of 28S rRNA, and the rate of protein

synthesis (Figure 7A–C). These results indicate that the

elevation of pre-rRNA synthesis by KDM2A knockdown in-

creases ribosome biogenesis and the rate of net protein

synthesis.

Discussion

We found that KDM2A was localized in nucleoli and bound

to the rDNA promoter. Our results indicate that KDM2A

reduced H3K36me1/2 on the rDNA promoter during starva-

tion and downregulates the level of rDNA transcription

(Supplementary Figure S7). A KDM2A knockdown resulted

in elevations of pre-rRNA synthesis, levels of mature riboso-

mal RNA, and the rate of protein synthesis. These results

suggest that KDM2A functions as a regulator of ribosome

biogenesis.

KDM2A controls demethylation of H3K36me1/2

on rDNA promoter

KDM2A has a demethylase activity in vitro on H3K36me1/2

(Tsukada et al, 2006). Starvation reduced the levels of

H3K36me1/2 marks on the rDNA promoter, and treatment

with DMS, which inhibited KDM2A demethylase activity,

suppressed the reduction during starvation (Figure 5A and

B). KDM2A knockdown increased the levels of H3K36me1/2

marks on the rDNA promoter (Figure 6A). These results

indicate that KDM2A reduced the levels of H3K36me1/2

marks on the rDNA promoter in response to starvation.

Although H3K36me1 has not been identified as a substrate

of KDM2A in vivo, the result shown here is the first sugges-

tion that the amount of H3K36me1 is also reduced by KDM2A

in vivo.

There are several JmjC enzymes that demethylate

H3K36me2/3, KDM4A/JHMD3A/JMJD2A (Whetstine et al,

2006; Klose et al, 2006b), KDM4B/JMJD2B (Allis et al, 2007),

and KDM4C/JMJD2C (Allis et al, 2007), which may be

involved in demethylation of H3K36me2 on the rDNA pro-

moter. However, the level of H3K36me3 marks was not

increased by DMS during starvation (Figure 5B), suggesting

that these JmjC demethylases did not erase H3K36me2 on the

rDNA promoter under starvation. KDM2B was originally

reported to demethylate H3K36me1/2 in vitro (Tsukada

et al, 2006), and recently its demethylase activity for

H3K36me2 was identified on genes in vivo (He et al, 2008;

Polytarchou et al, 2008; Tzatsos et al, 2009). KDM2B was

suggested to be localized in nucleoli and bind to rDNA

Figure 5 Levels of methyl histone marks under starvation condi-
tions in the presence or absence of cell-permeable succinate (DMS).
(A) MCF-7 cells were cultured with or without starvation for 9 h,
and the histone methylation status on rDNA promoters was inves-
tigated by ChIP analyses using specific antibodies to H3K36me1,
H3K36me2, H3K36me3, H3K4me3, and histone H3. The results
were expressed as fold changes to the values without starvation.
(B) MCF-7 cells were cultured with starvation in the presence or
absence of 50 mM DMS for 9 h, and the histone methylation status
on rDNA promoters was detected as in (A). The results are
expressed as fold changes to the values without DMS. For (A) and
(B), the experiments were performed at least three times, and mean
values with standard deviations are indicated. *Po0.05; **Po0.01;
#P40.1 (no significant difference).
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Figure 6 KDM2A was involved in the reduction of rDNA transcription by starvation, and its activity was controlled by succinate. (A) MCF-7
cells were transfected with control or KDM2A siRNA. Forty-eight hours after transfection, cells were further cultured 2 h with or without
starvation. ChIP analyses using H3K36me1, H3K36me2, histone H3, and KDM2A antibodies were performed on the rDNA promoter as shown
in Figure 2C. The experiments were performed three times, and mean values with standard deviations are indicated. *Po0.05; **Po0.01. The
knockdown of KDM2A was confirmed by western blotting (lower panel). The positions of the molecular weight markers are indicated on the
right side of the figure. (B) MCF-7 cells were transfected with control or KDM2A siRNA. Forty-eight hours after transfection, cells were further
cultured 9 h with or without starvation. The amounts of pre-rRNA and KDM2A mRNA were measured by qRT–PCR as described in Figure 3A.
The results are expressed as amounts relative to the values of cells treated with control siRNA and without starvation. For (B), (C), and (D), the
experiments were performed three times, and mean values with standard deviations are indicated. *Po0.05; **Po0.01. (C) Increased levels of
pre-rRNA transcript by KDM2A knockdown in (B) were expressed against the values with control siRNA. The increase of rDNA transcription
with starvation was higher than that without starvation. *Po0.05. (D) Succinate functions through KDM2A to regulate rDNA transcription.
Forty-eight hours after MCF-7 cells were transfected with control or KDM2A siRNA, cells were cultured in the presence or absence of DMS for
9 h with starvation. The increases of pre-rRNA transcript amounts with DMS were expressed against the values without DMS in each case (with
treatment of control or KDM2A siRNA). With KDM2A knockdown, DMS did not increase the amount of pre-rRNA. *Po0.05.
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(Frescas et al, 2007). However, KDM2B was reported to

demethylate H3K4me3 on the rDNA promoter (Frescas

et al, 2007). The knockdown of KDM2A largely increased

the levels of H3K36me1/2 marks on the rDNA promoter, and

completely abolished the reduction of the marks under

starvation (Figure 6A). These results indicate that KDM2A

is a major factor for H3K36me1/2 demethylation on the rDNA

promoter region under starvation.

Although KDM2A also bound to other regions of rDNA in

addition to the promoter (Figure 2C), H3K36me1/2 levels in

these regions were not affected by starvation and DMS

treatment. These results suggest that there is a mechanism

to transduce the starvation signal specifically to KDM2A

located in the rDNA promoter in rDNA. These results also

suggest that KDM2A may function during conditions other

than starvation to control the status of rDNA chromatin.

When KDM2A functions in all regions of rDNA chromatin

is unresolved.

Endogenous KDM2A was preferentially localized in

nucleoli, and was detected in rDNA but not in the TBP gene

(Figure 2; Supplementary Figure S3). The molecular mechani-

sms by which KDM2A accumulates in nucleoli are also

important issues to be resolved in the future.

KDM2A and H3K36me1/2 marks may have role

in short-term regulation on rDNA chromatin

Eukaryotes maintain several hundred copies of rDNA in each

cell, but only a proportion of the genes are competent to be

transcribed (Grummt and Ladurner, 2008). Actively tran-

scribed rDNA chromatin exhibits euchromatic features,

including methylation of histone H3 lysine 4 (H3K4). On

the other hand, silent rDNA chromatin bears heterochromatin

marks such as hypermethylated DNA at CpG residues in the

promoters (Grummt and Ladurner, 2008). These epigenetic

marks of rDNA chromatin are heritably maintained through

DNA replication, suggesting that the epigenetic status is

stable (Li et al, 2005). In response to environmental condi-

tions, the transcription rate of the active rDNA is changed,

which is termed short-term regulation (Grummt, 2003). In

addition, in response to certain types of environmental con-

ditions or during tumourigenesis, active genes can become

silent ones and vice versa, and the proportion of active genes

to silencing ones is varied, which is termed epigenetic

transition (Santoro, 2005; Huang et al, 2006; Grummt, 2007;

Grummt and Ladurner, 2008).

The level of H3K4me3 marks, generally accepted as

epigenetic marks of active genes, did not change in the

starvation conditions used here (Figure 5A). Digestion of

rDNA by the methylation-sensitive restriction enzyme HpaII

showed that the copy number of the silent rDNA did not

change during the starvation conditions (Supplementary

Figure S8). These results suggest that the epigenetic transi-

tion from active to silent rDNA did not occur in our experi-

mental conditions. In these conditions, H3K36me1/2 marks

were reduced by KDM2A, suggesting that KDM2A and

H3K36me1/2 have a role in the short-term regulation of

rDNA chromatin without epigenetic transition.

In our starvation conditions, serum and glucose were

depleted. Serum contains growth factors and nutrients that

stimulate several transduction pathways. The mammalian

target of rapamycin (mTOR) and ERK/MAPK pathways

regulate pol I transcription in response to growth factors

and nutrients (Grummt, 2003; James and Zomerdijk, 2004).

It was suggested that these pathways regulate pol I transcrip-

tion by modulating the activity of the pol I-specific transcrip-

tion initiation factor TIF-IA (Zhao et al, 2003; Mayer et al,

2004). ERK/MAPK also phosphorylates the HMG boxes of

UBF, a pol I factor essential for transcription enhancement,

and it was shown to directly regulate elongation by inducing

the remodelling of rDNA chromatin (Stefanovsky et al, 2006).

Figure 7 Effects of KDM2A knockdown on pre-rRNA synthesis,
mature RNA, and the rate of protein synthesis. MCF-7 cells were
transfected with siRNA for KDM2A. With or without further cultur-
ing in starvation conditions for 24 h, RNA was isolated and pre-
rRNA (A) and mature 28S ribosomal RNA (28S rRNA) (B) were
detected by qRT–PCR. Cells were also cultured with [3H]leucine for
2 h and the radioactivity incorporated into the protein was mea-
sured (C). The results were normalized for cell count. The relative
values with siRNA for KDM2A against these with control siRNA
were expressed. The experiments were performed three times, and
mean values with standard deviations are indicated. *Po0.05;
#P40.1 (no significant difference).
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In glucose starvation, the NADþ/NADH ratio is elevated, and

the NADþ -dependent histone deacetylase SIRT1 is activated.

SIRT1 controls several proteins that repress transcription of

rDNA (Muth et al, 2001; Murayama et al, 2008; Zhou et al,

2009). These signalling molecules and pol I-specific regula-

tory molecules may be related to the control of KDM2A

activity, and this is an important issue to be resolved in

the future.

An experiment in which the rDNA immunoprecipitated by

the anti-KDM2A antibody was digested by HpaII indicated

that KDM2A occupied both unmethylated and methylated

rDNA copies (Supplementary Figure S9). These results sug-

gest that KDM2A may also have a role in establishing and/or

maintaining the silencing rDNA chromatin in addition to

short-term regulation. Epigenetic transition is mediated by

nucleolar remodelling complex (NoRC) (Strohner et al, 2001)

and the recently identified energy-dependent nucleolar silen-

cing complex (eNoSC) (Murayama et al, 2008). NoRC

contains Snf2 h, which recruits DNA methyltransferase and

histone deacetylase activities to the promoter (Santoro et al,

2002; Grummt and Ladurner, 2008). eNoSC is a complex

consisting of a histone deacetylase, a histone methyltransfer-

ase, and a methylated histone-binding protein (Murayama

et al, 2008). KDM2A may be related to the functions of these

components.

Biological significance of methylations of histone H3

lysine 36

In the TBP gene, the levels of H3K36me1/2/3 were higher in a

transcribed region than in the promoter region (Supple-

mentary Figure S4B). On the other hand, in rDNA, a greater

abundance of the levels of H3K36me1/2/3 marks was not

detected in the transcribed regions compared with the pro-

moter region (Supplementary Figure S5). These results sug-

gest that H3K36me1/2/3 marks in the rDNA chromatin are

distinctly different from those in a gene transcribed by pol II.

Set2, which is responsible for methylation of H3K36, was

identified from Saccharomyces cerevisiae. Set2 and methyla-

tion at H3K36 were reported to have a function in the

repression of gene transcription (Strahl et al, 2002).

Furthermore, it was found that Set2 is recruited by pol II,

which localizes H3K36 methylation to the body of genes

(Krogan et al, 2003; Li et al, 2003; Schaft et al, 2003; Xiao

et al, 2003); it was also reported that Rpd3S is recruited to

nucleosomes with methylated H3K36 to suppress inappropri-

ate and spurious intragenic transcription (Carrozza et al,

2005; Keogh et al, 2005). In mammals, the distribution of

H3K36me3 marks is also elevated after the transcription start

sites in the coding region (Barski et al, 2007; Li et al, 2007).

Recently, it was reported that H3K36me3 marks were related

to suppression of gene transcription in mice (Nimura et al,

2009). Wolf-Hirschhorn syndrome candidate 1 (WHSC1) is

one of five putative Set2 homologues. Experiments using cells

with a deletion of this gene showed that WHSC1 governed

H3K36me3 along the euchromatin by associating with some

transcription factors and repressing inappropriate transcrip-

tion. In rDNA, the level of H3K36me3 in the transcribed

regions (H1, H4, and H13) was not higher than that in the

promoter region (H0), although it tended to be higher than

it was in the untranscribed region (H27) (Supplementary

Figure S5). These results suggest that the level of

H3K36me3 has some relation to transcription, but the

H3K36me3 mark in the rDNA promoter has a different

significance from that in genes transcribed by pol II.

H3K36me2 was suggested to be different from H3K36me3

in both distribution and function. In Drosophila, H3K36me2

is highest adjacent to promoters and requires dMes-4,

whereas H3K36me3 accumulates towards the 30 end of

genes and relies on dHypb. Reduction of H3K36me3 leads

to elevated levels of acetylation, specifically at lysine 16 of

histone H4 (H4K16ac). In contrast, reduction of H3K36me1/2

decreases H4K16ac (Bell et al, 2007). These results suggest

that H3K36me1/2 have opposite effects on H4K16 acetylation

against H3K36me3. Furthermore, in Drosophila, dKDM2 has

a role in a trans-histone pathway involving the removal of

H3K36me2 marks and formation of histone H2A ubiquitila-

tion during polycomb group silencing (Lagarou et al, 2008),

suggesting that H3K36me2 is an active mark. In mammals,

KDM2B targets the INK4b-ARF-INK4a locus and demethy-

lates H3K36me2 to downregulate the expression of INK4b

and INK4a (He et al, 2008; Tzatsos et al, 2009). These results

are consistent with our results here that H3K36me2 marks

on the rDNA promoter are associated with transcriptional

activation (Figure 7D).

However, KDM2B was also reported to promote the

expression of NAD(P)H quinone oxidoreductase-1 and per-

oxiredoxin-4 by directly binding to the promoters of their

genes and demethylating H3K36me2 (Polytarchou et al,

2008). Furthermore, H3K36me2 is sufficient to target the

histone deacetylase complex, Rpd3S, in vivo (Li et al,

2009). These results suggest that H3K36me2 is also a gene

repression mark, and that H3K36me2 marks may have

distinct physiological significance in different genes.

KDM2A reduced H3K36me1 marks in addition to

H3K36me2 marks on the rDNA promoter (Figure 6A).

These results suggest that unmethylated lysine 36 histone

H3 (H3K36me0) is produced by KDM2A. There is a precedent

for an unmethylated lysine residue of histone H3 showing

physiological significance. KDM1/LSD1 is a lysine-specific

histone demethylase that demethylates histone H3 on lysine

4, produces unmethylated H3K4 (H3K4me0), and represses

transcription. The plant homeodomain finger of BHC80 binds

H3K4me0, and this interaction is specifically abrogated by

methylation of H3K4. These findings indicate that unmodi-

fied H3K4 is part of the ‘histone code’ (Lan et al, 2007).

Taking H3K4me0 as an analogy, it is possible that H3K36me0

functions as a histone code on the rDNA promoter.

Clarification of each function of mono-, di-, tri-, and

unmethylated H3K36 on the rDNA promoter will further the

understanding of the control of gene expression.

Exogenously expressed KDM2A can decrease the

H3K36me2 level in the entire region of the nuclei when

H3K36me2 marks are detected under a microscope.

However, it can also preferentially repress pre-rRNA tran-

scription (Figure 3). There are two possibilities to explain this

phenomenon. In the first, the change of H3K36me2 marks

affects transcription of only a limited number of genes. In

general, the changes of histone codes in promoter regions

appear to affect transcription more effectively than those in

transcribed regions. As described in Supplementary Figure

S4B, the level of H3K36me2 marks in the promoter region

was lower than those in a transcribed region in the TBP gene.

These results suggest that H3K36me2 marks may not have

much significance in transcription in the TBP gene. On the
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contrary, the levels of H3K36me2 marks in the promoter

region (H0) were similar to those in the transcribed regions

(H1, H4, and H13) in rDNA. In addition, the amount of

H3K36me2 in the rDNA promoter was higher than that in

the TBP promoter (Supplementary Figure S4B and S5). These

results suggest that a demethylase for H3K36me2 may affect

transcription of rDNA more strongly than transcription of

TBP. Therefore, it is possible that a reduction of the

H3K36me2 level in most genes in the nucleoplasm affects

their transcription weakly, compared with that in rDNA.

In the second possibility, H3K36me1 or H3K36me0, but not

H3K36me2, may be a histone code for transcription control.

KDM2A knockdown increased the levels of H3K36me1/2

marks in the rDNA promoter. On the contrary, overexpression

of KDM2A reduced overall levels of H3K36me2 but not

H3K36me1 in nuclei (Tsukada et al, 2006), suggesting that

KDM2A has a specific mechanism to reduce the H3K36me1

level in the rDNA but not in the other genes. The reduced

H3K36me1 level or the increased H3K36me0 level may be

related to reduction of transcription. The above two possibi-

lities are not mutually exclusive. Determining the molecular

mechanisms relating to the possibilities may lead to a better

understanding of KDM2A specificity on rDNA.

KDM2A may be involved in tumourigenesis under

pseudohypoxic conditions

The activity of KDM2A was inhibited by succinate. Succinate

is the organic acid in the TCA cycle, and its concentration

may be changed in response to external conditions. This

raises the possibility that succinate may be an intracellular

signalling molecule regulating KDM2A activity. Although it is

not clear whether this organic acid is involved in the signal

transduction in a normal cell, the control of enzyme activity

by succinate had been recently proposed to occur in some

specific tumours. HIFa is hydroxylated by HIFa prolyl hydro-

xylase (PHD) under normal oxygen conditions (normoxia),

and the hydroxylated HIFa is degraded quickly (Kim and

Kaelin, 2003). Hypoxia inhibits the activity of PHD, and

accumulation of HIFa induces hypoxia-response genes such

as vascular endothelial growth factor. A deficiency of the

regulatory system induces an aberrant stabilization of HIFa
under normoxic conditions, a condition termed pseudo-

hypoxia, which predisposes to tumourigenesis. Mutations in

genes coding subunits of succinate dehydrogenase (SDH) in

the TCA cycle are associated with the development of para-

ganglioma and pheochromocytoma (Favier et al, 2005;

Gottlieb and Tomlinson, 2005; Hao et al, 2009). In those

tumours, succinate is accumulated (Pollard et al, 2005). PHD

is an a-KG-dependent enzyme that catalyses a-KG to succi-

nate during its hydroxylation reaction; in turn, the accumu-

lated succinate inhibits PHD activity even under normoxia,

which results in pseudohypoxia (Isaacs et al, 2005; Pollard

et al, 2005; Selak et al, 2005). Pseudohypoxia is also currently

reported in glioblastoma multiforme (a malignant human

brain tumour) with mutations of the isocitrate dehydrogenase

(IDH1) gene. IDH1 catalyses isocitrate to a-KG, and a dys-

function of IDH1 results in a decreased level of a-KG, low-

ering PHD activity and inducing pseudohypoxia (Zhao et al,

2009). Although the control of HIF activity under pseudohy-

poxic conditions fits well with the tumourigenesis that occurs

under defects in certain TCA cycle enzymes and IDH1,

additional mechanisms that involve other a-KG-dependent

enzymes regulated by pseudohypoxic conditions are sus-

pected to be involved in tumourigenesis (Sudarshan et al,

2007; Pollard and Ratcliffe, 2009; Tsuneoka et al, 2009). The

presence of these mechanisms may be attributed to the

difference between tumour predispositions conferred by

mutations in distinct genes such as IDH1 and SDH.

As early as 1970, changes in nucleoli were recognized as a

reliable marker of cellular transformation (Gani, 1976).

Several tumour suppressors reduce rDNA transcription, and

some proto-oncogenes increase it. Mutations in genes that

encode proteins directly involved in ribosome biogenesis

have been associated with cancer (Ruggero and Pandolfi,

2003). Therefore, malignant progression may be regulated

partly through altering ribosome biogenesis. KDM2A func-

tions as a negative regulator for ribosome biogenesis by

decreasing rDNA transcription (Supplementary Figure S7).

Transfection of MCF-7 cells with a KDM2A-expressing vector

carrying a puromycin-resistant gene greatly reduced the

number of colonies produced in the presence of puromycin

compared with transfection with the empty vector (Table S1).

These results suggest that KDM2A has a negative effect on

cell proliferation. KDM2A is an a-KG-dependent enzyme

(Tsukada et al, 2006). The elevated level of succinate inhibits

KDM2A activity (Figure 4D) and increases rDNA transcrip-

tion (Figure 4A and B). KDM2A knockdown completely

abolished the increase in the amount of pre-rRNA because

of succinate (Figure 6D), confirming that succinate elevates

rDNA transcription through inhibition of KDM2A. Succinate

also increased the amounts of mature ribosome RNA in cells,

and the KDM2A knockdown abolished the increase

(Supplementary Figure S10). Therefore, the novel mechanism

presented here, by which KDM2A reduces rDNA transcrip-

tion, may be involved in tumourigenesis under the pseudo-

hypoxic conditions induced by defects in enzymes such

as SDH.

Materials and methods

Cells and cell culture
Human breast adenocarcinoma cell line MCF-7 cells and human
cervical carcinoma HeLa cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Cat# D5796; Sigma-Aldrich Co.) supple-
mented with 10% foetal calf serum. Cells were maintained at 371C
in an atmosphere containing 5% CO and 100% humidity. The
mammalian expression plasmids were introduced into human cells
using FuGENE 6 transfection reagent (Roche Applied Science,
Indianapolis, IN, USA) according to the manufacturer’s instruc-
tions. In Figure 3A, 5mg of plasmids was introduced by electro-
poration using a Gene Pulser II electroporator (Bio-Rad
Laboratories) at 270 V, 100mF, using Gene Pulser Electroporation
Buffer (Cat#165-2677; Bio-Rad) according to the manufacturer’s
instructions.

For starvation, cells were cultured in serum-free DMEM that
did not contain glucose (Cat# D5030; Sigma-Aldrich). In some
experiments, cells were cultured with a cell-permeable succinate,
50 mMDMS (SO104; Tokyo Kasei Kogyo Co., Tokyo, Japan), as
indicated in the figure legends.

Antibodies
Mouse monoclonal anti-nucleolin antibody (C23 (MS-3): sc-8031;
Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit anti-
nucleolin antibody (C23 (H-250): sc-13057; Santa Cruz), mouse
monoclonal anti-b-actin (AC-15) antibody (Sigma, St Louis, MO,
USA), mouse monoclonal anti-FLAG (M2) antibody (Sigma), goat
anti-rabbit IgG-HRP (sc-2054; Santa Cruz), anti-monomethylated
histone H3 lys36 antibody (ab9048; Abcam Cambridge, UK),
anti-trimethylated histone H3 lys36 antibody (ab9050; Abcam),
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anti-trimethylated histone H3 lys4 antibody (ab8580; Abcam), anti-
histone H3 antibody (ab1791; Abcam), Alexa 488-conjugated goat
anti-mouse IgG (HþL) (A11029; Invitrogen, Carlsbad, CA, USA),
and Alexa 568-conjugated goat anti-rabbit IgG (HþL) (A11011;
Invitrogen,) were purchased.

Anti-dimethylated histone H3 lys36 antibody (#9758; Cell
Signaling Technologies, Beverly, MA, USA) and control antibody
(normal rabbit IgG, #2729S; Cell Signaling) were also purchased.
We compared this antibody to another anti-H3K36me2 antibody
(cat# 07-274; Millipore), which was shown to work in ChIP assays
by the manufacturer. As shown in Supplementary Figure S11, the
Cell Signaling antibody produced stronger signals than the Millipore
antibody in ChIP experiments. Therefore, we used the Cell Signaling
anti-H3K36me2 antibody in this study.

Antibodies to KDM2A are described in the Supplementary data.

siRNA for human KDM2A
Cells were transfected with stealth siRNA using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s instructions. The
siRNA oligonucleotide sequence for KDM2A was 50-GAACCCGAAG
AAGAAAGGAUUCGUU-30. The position of the sequence is shown in
Figure 1A. Cells were also transfected with control stealth RNA
(Stealth RNAi Negative Control Medium GC Duplex, Invitrogen).

Western blotting and immunofluorescence staining
Cells were trypsinized and extracted in 3% SDS solution containing
100 mM Tris, pH 6.8, 0.1 M DTT, and 20% glycerol. Cell extracts
were separated on SDS–PAGE and transferred to a microporous
polyvinylidene difluoride membrane (Millipore, Bedford, MA,
USA). After treatment with antibodies, bands were detected using
an enhanced chemiluminescence technique (Amersham Bios-
ciences, Piscataway, NJ, USA).

For indirect immunofluorescence staining, cells grown on glass
coverslips were fixed in methanol for 20 min at �201C and
incubated in 1% bovine serum albumin (BSA) in PBS. Rabbit
antibody and/or mouse monoclonal antibody were added and
incubated for 60 min at 371C. After washing in 0.1% BSA in PBS
three times, Alexa 488-conjugated anti-mouse IgG and Alexa 568-
conjugated anti-rabbit IgG were added, incubated for 60 min at
371C, and washed with 0.1% BSA three times. Finally, cells were
embedded in Immunon (Thermo Shandon, Pittsburgh, PA, USA)
and observed through confocal fluorescence microscopy.

RNA preparation and qRT–PCR
Total RNA was isolated from cells using RNeasy mini kit (Qiagen
Inc.) according to the manufacturer’s instructions. Synthesis of
single-strand cDNA was performed on total RNA (1mg) by a
Superscript First-strand Synthesis system (Invitrogen) using ran-
dom primers according to the manufacturer’s instructions. In all,
1ml (total 20 ml) of the resultant single-strand cDNA was used as the
template for qRT–CR, using Platinum SYBR Green qPCR SuperMix-
UDG (Invitrogen) with Mx3000P (Stratagene, La Jolla, CA, USA)
according to the manufacturers’ instructions. The values were
normalized using the amounts for a control mRNA, RNA
polymerase II subunit a (Polr2a) mRNA (Dydensborg et al, 2006).
The sets of PCR primers for amplification of the pre-rRNA (a
sequence in the 50 untranslated region 1–155) used were 50-
GCTGACACGCTGTCCTCTG-30 and 50-TCGGACGCGCGAGAGAAC-30;
for KAM2A, the primers used were 50-TCCCCACACACATTTTGA
CATC-30 and 50-GGGGTGGCTTGAGAGATCCT-30; for Polr2a, the
primers used were 50-ATCTCTCCTGCCATGACACC-30 and 50-AGACC
AGGCAGGGGAGTAAC-30.

Statistics
P-values were calculated by two-tailed paired Student’s t-test.

Detection of ongoing rDNA transcription
Ongoing ribosomal RNA synthesis was measured by detecting
incorporated fluorouridine (FUrd, Sigma-Aldrich) in in situ run-on

assays (Kruhlak et al, 2007). Cells were incubated with 2 mM FUrd
in medium for 15 min and fixed with methanol for 20 min at �201C.
Incorporated FUrd was detected by anti-BrdU antibody (Sigma-
Aldrich) and Alexa 488-conjugated goat anti-mouse IgG (HþL) and
observed through fluorescence microscopy. The number of cells
with FUrd signals remaining in the nucleoli was counted. The
results were expressed at % of FUrd-positive cells.

Chromatin immunoprecipitations
ChIP asssays were performed using a MAGnify ChIP system
(Invitrogen), as described (Nelson et al, 2006), referring to the
manufacturer’s instructions. Collected DNA fragments were mea-
sured by real-time PCR. The positions of the sets of PCR primers for
the amplification of rDNA are indicated in Figure 2C, The primers
used for H0 were 50-GCTGACACGCTGTCCTCTG-30 and 50-TCGGA
CGCGCGAGAGAAC-30; for H1, 50-GGCGGTTTGAGTGAGACGAGA-30

and 50-ACGTGCGCTCACCGAGAGCAG-30; for H4, 50-CGACGACCCAT
TCGAACGTCT-30 and 50-CTCTCCGGAATCGAACCCTGA-30; for H13,
50-ACCTGGCGCTAAACCATTCGT-30 and 50-GGACAAACCCTTGTGTC
GAGG-30; and for H27, 50-CCTTCCACGAGAGTGAGAAGCG-30 and
50-CTCGACCTCCCGAAATCGTACA-30.

To detect the specific binding, the values simultaneously
obtained by using the control antibody (normal rabbit IgG) were
subtracted from those using specific antibodies. The values for
specific binding were divided by total input, and expressed at a %
of specific binding/input. As shown in Supplementary Figure S3,
histone H3 was almost evenly distributed over all regions of rDNA.
Then the values for the specific binding were normalized by the
values for H3, and expressed as a % of specific binding/input
normalized by H3.

Measurement of the rate of protein synthesis
The rate of protein synthesis was assayed basically as described
earlier (Tsuneoka et al, 1993). In brief, cells were cultured in Ham’s
F12 medium with 0.5mCi/ml [3H]leucine for 1 h, and the radio-
activity incorporated into protein was measured. The rate of protein
synthesis was expressed per cell.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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