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L I F E  S C I E N C E S

Accurate inference of genome-wide spatial  
expression with iSpatial
Chao Zhang1,2,3†, Renchao Chen1,2,3†, Yi Zhang1,2,3,4,5*

Spatially resolved transcriptomic analyses can reveal molecular insights underlying tissue structure and context-
dependent cell-cell or cell-environment interaction. Because of the current technical limitation, obtaining genome-
wide spatial transcriptome at single-cell resolution is challenging. Here, we developed a new algorithm named 
iSpatial to derive the spatial pattern of the entire transcriptome by integrating spatial transcriptomic and single-cell 
RNA-seq datasets. Compared to other existing methods, iSpatial has higher accuracy in predicting gene expres-
sion and spatial distribution. Furthermore, it reduces false-positive and false-negative signals in the original data-
sets. By testing iSpatial with multiple spatial transcriptomic datasets, we demonstrate its wide applicability to 
datasets from different tissues and by different techniques. Thus, we provide a computational approach to reveal 
spatial organization of the entire transcriptome at single-cell resolution. With numerous high-quality datasets 
available in the public domain, iSpatial provides a unique way to understand the structure and function of com-
plex tissues and disease processes.

INTRODUCTION
In the past decade, single-cell RNA sequencing (scRNA-seq) has 
transformed our understanding of the cellular heterogeneity of 
various tissues/organs in multicellular organisms (1–4). With cur-
rent scRNA-seq techniques, obtaining whole transcriptomic pro-
files of tens to hundreds of thousands of single cells has become 
routine. However, most high-throughput scRNA-seq methods use 
dissociated cells, and consequently, the spatial information of the 
analyzed cells is lost, which prevents directly connecting the molecu-
lar features of the analyzed cell types to their anatomic and function-
al features. On the other hand, the development of spatially resolved 
transcriptomic assays has enabled the transcript/cell location analysis 
in the tissue context, which has the potential to reveal how single-
cell gene activity orchestrates the structure and function of complex 
tissues in health and disease (5).

In the past few years, different methods for spatial transcriptomic 
(ST) assays have been developed (6–13). Ideally, the spatial transcrip-
tome data should provide genome-wide and spatially resolved ex-
pression measurements at single-cell resolution. However, because 
of technical limitations, either spatial resolution or gene coverage is 
compromised in most ST assays. For example, in situ capture and 
sequencing-based techniques are able to capture any mRNA mole-
cules without preknowledge, but the spatial resolution is not at single-
cell level (6, 14). On the other hand, in situ sequencing and fluorescence 
in situ hybridization (FISH)–based mRNA measurement can achieve 
cellular or subcellular resolution, but most of these assays are limited 
with their throughput to genes that can be detected (usually 30 to 
500) and require preknowledge for probe design (7–9).

With the rapid development of scRNA-seq and ST technolo-
gies, new bioinformatic tools have been developed to overcome the 
challenges in single-cell or ST data analysis (15–20). Several impu-
tation methods for scRNA-seq data have emerged, including MAGIC 
(21), scImpute (22), DrImpute (23), and ALRA (24). However, methods 
developed for inferring ST data are still limited. Notably, by inte-
grating scRNA-seq and spatially resolved profiling data, recent com-
putational methods have leveraged the strength of different datasets 
and revealed information that otherwise cannot be obtained from a 
single experimental paradigm. For example, when the correspond-
ing scRNA-seq is available, SpatialDWLS and RCTD could perform 
deconvolution on the “low-resolution” spatial dataset to estimate the 
cell type/proportion in each spatially resolved spot (25, 26). On the 
other hand, Tangram and Cell2location could predict the spatial 
location of molecularly defined cell types (from scRNA-seq) on the 
basis of ST data (27, 28). Seurat and Liger could impute transcriptome-
wide spatial expression by integrating with corresponding scRNA-
seq data and transferring the expression data to spatial transcriptome 
(29, 30). Despite these existing tools, inferring expression patterns 
of all genes at high spatial resolution by integrating scRNA-seq and 
ST data are not straightforward, and different approaches have variable 
performance when applied to different datasets. Because the perform
ance of this task is critical for downstream spatial analysis, a robust 
and convenient tool for spatial pattern prediction is highly desirable.

Here, we present iSpatial, an R-based bioinformatic tool that 
integrates scRNA-seq and ST profiling data to infer the expression 
pattern of each gene at high spatial resolution. We show that iSpatial 
outperforms existing approaches on its accuracy, and it can also re-
duce false-positive (FP) and false-negative (FN) signals in the orig-
inal data. By applying iSpatial to datasets from different tissues 
(hippocampus, hemibrain, cortex, striatum, and liver) and generated 
with different techniques (Slide-seq, Stereo-seq, MERFISH, and 
STARmap), we have revealed both known and previously unknown 
spatial expression patterns in each dataset, indicating iSpatial is 
broadly applicable for analyzing different ST datasets. Collectively, 
our analyses demonstrate that iSpatial is a useful tool for resolving 
transcriptome-wide spatial expression patterns at single-cell resolu-
tion in complex tissues.

1Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, 
USA. 2Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, 
MA 02115, USA. 3Division of Hematology/Oncology, Department of Pediatrics, Boston 
Children’s Hospital, Boston, MA 02115, USA. 4Department of Genetics, Harvard 
Medical School, Boston, MA 02115, USA. 5Harvard Stem Cell Institute, WAB-149G, 
200 Longwood Avenue, Boston, MA 02115, USA.
*Corresponding author. Email: yzhang@genetics.med.harvard.edu
†Co-first authors.

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

D
ow

nloaded from
 https://w

w
w

.science.org at B
ank of N

orw
ay on A

ugust 26, 2022

mailto:yzhang@genetics.med.harvard.edu


Zhang et al., Sci. Adv. 8, eabq0990 (2022)     26 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 14

RESULTS
Overview of iSpatial
The FISH and in situ sequencing–based ST techniques, such as 
MERFISH (7), seqFISH (8), osmFISH (12), and STARmap (9), can 
simultaneously reveal gene expression and location at single-cell 
resolution, but with limited predefined gene targets (Fig. 1A, left). 
On the other hand, scRNA-seq can unbiasedly profile the whole 
transcriptome, but without providing spatial information (Fig. 1A, 

middle). We reasoned that by integrating the single-cell gene ex-
pression profiles (the gene by cell matrices) of the two methods, the 
missing information of nontargeted genes in each spatially profiled 
cells could be inferred on the basis of scRNA-seq data, resulting in 
genome-wide spatial expression information of the profiled cells 
(Fig. 1A, right).

To this end, we first performed dimension reduction on scRNA-seq 
and ST data separately, followed by expression stabilization, which 

Fig. 1. Overview of iSpatial. (A) A diagram showing the rationale of iSpatial. The probe-based spatial transcriptome includes t × n (t, genes; n, cells) expression matrix 
and location of each cell. After integrating with m × n′ scRNA-seq data, iSpatial infers the genome-wide transcriptional expression of all n cells. (B) The iSpatial pipeline 
consisted of (i) dimension reduction; (ii) expression stabilization (optional); (iii) expression normalization; (iv) inferring transcriptional expression; (v) spatial variable gene 
detection; and (vi) cluster spatial expression patterns.
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removes potential noise/background expression based on the ex-
pression level of adjacent cells in principal components analysis 
(PCA) space. The two datasets were then normalized and embedded 
into a common space with two sequential rounds of integration: 
first by reciprocal PCA (RPCA) (29) and then through Harmony 
(31). On the basis of the common embedding, the expression value 
of each gene in each cell of the ST dataset is then inferred using a 
weighted k-nearest neighbors (KNN) model. Because the physical 
locations of these cells have been resolved in spatial profiling, the 
results represent a new single-cell gene expression profile with both 
genome-wide coverage and single-cell spatial resolution, which 
could be used for downstream analyses including identification of 
spatially variable genes (SVGs; Fig. 1B). Here, the genes that showed 
nonrandom distribution on spatial expression are defined as SVGs.

iSpatial outperforms existing tools in its accuracy 
on predicting spatial expression pattern
To evaluate the performance of iSpatial and compare it with existing 
tools, we used a mouse hippocampal dataset generated from Slide-
seq V2 (32). Because this dataset includes the spatial expression of 
all genes, it can be used for evaluating the prediction performance 
(Fig. 2A). Specifically, we divided the dataset into the training and 
validation groups, which contain 3000 and ~20,000 genes, respec-
tively. The training data group (mimic a ST dataset) was integrated 
with a scRNA-seq dataset covering the same brain region (hippo-
campus) (1, 33) (but by a different method) to infer the expression 
level and spatial patterns of the genes in the validation data group. 
By comparing the inferred expression patterns with the “truth” de-
termined by Slide-seq (validation data group), we found that iSpatial 
could predict the spatial expression pattern with high accuracy. For 
example, iSpatial inferred the expression of Atp2b1, Prox1, and Fibcd1, 
which were not included in the training data group, across the en-
tire hippocampus, dentate gyrus, and CA1, respectively, consistent 
with the Slide-seq validation data and in situ hybridization (ISH) 
results from the Allen Brain Atlas (ABA; Fig. 2B) (33). We found 
that iSpatial could “enhance” the signals not well detected in the origi-
nal data. For example, Slit1, Tspan18, Efnb2, Car12, and others were 
barely detectable in hippocampal cells by Slide-seq; thus, it was dif-
ficult to determine their spatial pattern. With iSpatial, the expres-
sion of these genes was clearly visible; thus, their spatial pattern 
could be clearly recognized. This is unlikely an artifact of imputa-
tion, as the spatial expression inferred by iSpatial is consistent with 
that of the ABA data (Fig. 2C and fig. S1A).

We further compared the performance of iSpatial with another 
two existing tools, Liger (30) and Seurat (29), on the same task using 
the Slide-seq dataset. Although these two methods could also infer 
the expression patterns of genes not included in the training data 
group, compared with iSpatial, the spatial patterns obtained from 
Liger and Seurat were more ambiguous with higher background in 
general (Fig. 2, B and C, and fig. S1A). To quantitatively benchmark 
these different methods, we calculated the expression and spatial 
correlation coefficient as well as the root mean square error (RMSE) 
between Slide-seq data (regarded as ground truth) and inferred re-
sults from iSpatial, Liger, or Seurat on each gene of the validation 
dataset. The results showed iSpatial exhibited significantly higher 
correlation coefficient and lower RMSE than the other methods 
across all gene groups with different expression levels, and the accu-
racy of prediction is positively correlated with the gene expression 
level (Fig. 2, D and E, and fig. S1B). In addition, cell type–specific 

expressed genes exhibit higher prediction accuracy (fig. S1C). This 
result suggests that iSpatial achieves higher prediction accuracy on 
functionally relevant genes. Furthermore, when comparing the SVGs 
identified from the original Slide-seq data with those identified from 
inferred data of different methods (fig. S1D), we found that iSpatial 
has the highest prediction power with area under the curve (AUC) 
greater than 0.84 on SVGs among the three methods (Fig. 2F).

We also used Stereo-seq data of an adult mouse coronal hemibrain 
section (34) to benchmark the performance of our method. Similar 
to Slide-seq V2, we randomly sampled 3000 genes as training data-
set, and other genes as validation dataset (fig. S2A). After integrating 
with a single cell dataset of corresponding brain regions (2), we 
compared the performance of Liger, Seurat, and iSpatial on predict-
ing the gene expression levels and patterns. The results showed that 
iSpatial achieved higher correlation than other methods on valida-
tion datasets (fig. S2, B to E). Collectively, these analyses indicate 
that iSpatial outperforms existing tools in terms of accuracy on pre-
dicting spatial expression pattern.

iSpatial is broadly applicable to different ST datasets
After validating the performance of iSpatial with Slide-seq and 
Stereo-seq data, we further tested whether iSpatial can be applied to 
other ST datasets generated from different tissues and with different 
techniques. To this end, we first used iSpatial to analyze a STARmap 
dataset that covered the primary visual cortex (V1) of mouse brain 
(Fig. 3A) (9). Although the original STARmap data only included 
1020 gene targets, iSpatial successfully inferred the expression of over 
20,000 genes by integrating a single-cell smart-seq dataset from ABA 
(Fig. 3B) (35). The spatial expression patterns of genes not included 
in the original STARmap data could be faithfully inferred by iSpatial. 
For example, the layer-specific expression of a number of genes was 
accurately predicted as evidenced by its similarity to that of the 
ABA ISH results (Fig. 3C). Notably, iSpatial not only correctly pre-
dicted the layer distribution of nontargeted genes but also detected 
the expression variation of certain genes based on their spatial loca-
tions. For example, it predicted (i) a high-to-low gradient of Pvrl3 
across upper cortical layers and (ii) strong expression of Serinc2 and 
Col5a1 in cortical layer VI but relatively weak expression in upper 
layer V, both of which were confirmed by ISH data (Fig. 3C).

In additional to the STARmap dataset, we analyzed a recently 
published MERFISH dataset of mouse striatum (36) with iSpatial 
(Fig. 3D). The original MERFISH dataset contained 253 target genes 
that allowed the identification of nine major cell types in the stria-
tum (fig. S3A), with 175 target genes exhibiting significant enrich-
ment in certain cell types (fig. S3B). By integrating this dataset with 
corresponding scRNA-seq data, iSpatial could infer the expression 
and location of ~9000 genes at single-cell resolution (Fig. 3E and fig. 
S3C), with over 2200 genes identified as cell type–specific expressed 
genes (fig. S3, D and E). The spatial patterns of inferred genes were 
largely consistent with those determined by ISH. For example, Gpr37 
was highly enriched in the anterior commissure, Coch formed a high-
to-low gradient from the dorsolateral to the ventromedial striatum, 
and Stard5 was specifically expressed in the medial nucleus accumbens 
(NAc); all these iSpatial inferred expression patterns are consistent 
with the results from ABA (Fig. 3F).

To globally evaluate the predication accuracy, we adopted a 
10-fold cross validation approach and found that iSpatial showed 
higher correlation coefficient and lower RMSE than other methods 
in both datasets (fig. S4). Collectively, these results demonstrated the 
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Fig. 2. Benchmarking the performance of iSpatial in inferring genome-wide spatial transcriptome. (A) A graphical illustration of the evaluation procedure. 
(B) Representative examples showing the performance of Liger, Seurat, and iSpatial in inferring spatial transcriptome. (C) Representative examples of inferred expression 
of genes barely detectable in raw Slide-seq data. (D) The gene expression correlation (Pearson’s correlation) between Slide-seq raw data and Liger, Seurat, or iSpatial in-
ferred data. The validation genes are divided into three groups on the basis of their expression levels. Two-sided Wilcoxon rank sum test was used. (E) Spatial expression 
correlation between inferred and raw Slide-seq data. Two-sided Wilcoxon rank sum test was used. (F) The receiver operating characteristic (ROC) curves comparing the 
prediction power of spatial variable genes by Liger, Seurat, and iSpatial. AUCs (area under the curves) are indicated.
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capacity of iSpatial in predicting the expression and location of genes using 
ST dataset generated from different tissues with different techniques.

iSpatial reduces FP and FN signals from  
spatial transcriptome
Although imaging-based transcriptomic assays have a higher detection 
efficiency when compared to that of sequencing-based methods, 

their performance is highly variable depending on the specific gene 
probes. For example, some transcripts are too short to be targeted 
by enough probes, which may lead to FN (dropout). On the other 
hand, some other genes may have close homologs that are difficult 
to distinguish with hybridization, leading to FP (background). We 
hypothesized that iSpatial could reduce these false signals by giving 
higher weights to cells of scRNA-seq when performing expression 

Fig. 3. iSpatial accurately infers the genome-wide spatial transcriptomes in mouse cortex and striatum. (A) Schematic of the anatomic region of mouse V1 
cortex. (B) The numbers of detectable genes in each cell in raw STARmap (left) and after inferring by iSpatial (right). The mean numbers of detected genes in each cell 
are shown in brackets. (C) Inferred layer expression patterns of representative genes not targeted in the original STARmap library compared with the ISH data from 
the ABA. (D) Schematic of the anatomic region of mouse striatum. (E) The numbers of detectable genes in each cell in raw MERFISH (left) and after inferring by iSpatial 
(right). (F) Inferred spatial expression patterns of representative genes not targeted in the original MERFISH library compared with the ISH data from the ABA.

D
ow

nloaded from
 https://w

w
w

.science.org at B
ank of N

orw
ay on A

ugust 26, 2022



Zhang et al., Sci. Adv. 8, eabq0990 (2022)     26 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 14

prediction, which were insensitive to gene length and could also un-
ambiguously distinguish similar transcripts on the basis of sequence 
differences. To test this hypothesis, we first compared the expression 
pattern of some well-established cell type markers on the Uniform 
Manifold Approximation and Projection (UMAP) between the origi-
nal STARmap data and iSpatial inferred data. We found that al-
though these cell type–specific markers exhibited high enrichment 
in corresponding cell types, there were often FP signals in other cell 
types when analyzed by STARmap (Fig. 4A, top panels, Slc17a7, Gad1, 
Plp1, and Cldn5). In some cases, the expected expression patterns 
were not observed, likely due to FN (Fig. 4A, top panels, Aqp4). Con-
sistent with our hypothesis, iSpatial could remove most FP signals from 
irrelevant cell types, without affecting the true-positive signals (Fig. 4A, 
bottom panels, Slc17a7, Gad1, Plp1, and Cldn5). Furthermore, iSpatial 
successfully inferred gene expression pattern that was missed in the orig-
inal STARmap analysis (Fig. 4A, bottom panels, Aqp4), suggesting that 
iSpatial can also reduce FN results. On the basis of these findings, 
we further asked whether iSpatial could infer spatial patterns that 
were not well detected by STARmap. We found a number of genes 
whose expected layer-specific expression patterns were not detected in 
the original STARmap analysis. For example, Nov, Rorb, Rspo1, Fezf2, 
and Foxp2 are established markers of different cortical layers. How-
ever, STARmap only detected sparse signals or even failed to detect 
real signals of these genes across all cortical layers (Fig. 4B). In con-
trast, iSpatial accurately captured the layer-specific expression pat-
terns of these genes that were also detected by ISH (Fig. 4B).

In addition to the STARmap cortical dataset, a similar effect of 
iSpatial in correcting FP and FN expression on the MERFISH striatum 
data is also observed. Specifically, iSpatial removed most FP noise of 
known cell type–specific markers (fig. S5, A and B). It also accurately 
predicted the expression and spatial pattern of genes not well de-
tected by MERFISH, such as Tac2, Serpinb2, and Kctd4 (Fig. 4C and 
fig. S5C). Compared to the original MERFISH data, the spatial pat-
terns inferred by iSpatial showed higher consistency with those 
determined by ISH (Fig. 4C and fig. S5C). For example, MERFISH 
indicates a broad distribution of Serpinb2 across the striatum, but 
iSpatial suggested it was selectively expressed in a small group of 
cells located in the medial shell of NAc (Fig. 4C). ISH from ABA 
confirmed the accuracy of iSpatial’s prediction (Fig. 4C), suggesting 
that iSpatial is capable of reducing noise. Collectively, these results 
showed that iSpatial can reduce FP and FN signals in the original ST 
data from different tissues generated by different techniques.

iSpatial enables whole transcriptome–level spatial analysis
One major goal of ST analysis is identifying SVGs, which are the 
molecular basis of structural/functional heterogeneity in different 
tissues. Because iSpatial could reliably infer genome-wide gene 
expression and their spatial locations, we sought to test whether 
iSpatial could augment the capability of a certain ST dataset in de-
tecting SVGs and spatial gene expression patterns. To this end, we 
applied iSpatial to the STARmap cortex dataset to identify SVGs. 
We found that iSpatial inferred data markedly increased the num-
ber of detected SVGs (from 21 to 2122; fig. S6A). Clustering analysis 
of the SVGs revealed six major spatial patterns (fig. S6B), which 
resemble the known layer organization of mouse cortex. Notably, 
even when we restricted the analysis to the target genes of STARmap, 
iSpatial still identified more SVGs (162 in inferred data and 21 in 
original data), likely due to the correction of FP and FN signals in 
the original data (see above).

In addition to STARmap, we performed parallel analysis to evaluate 
iSpatial’s effect on SVG identification using the MERFISH striatum 
dataset (Fig. 5A) and observed a similar increase in the SVGs num-
ber and statistic power of spatially variable test. Specifically, the SVG 
number increased by >20-fold (from 94 in the original data to 1968 
in the inferred data; fig. S6C). Compared to the cerebral cortex, the 
anatomic organization of striatum is more ambiguous and less well 
understood, although recent studies have suggested distinct tran-
scriptional features and cell types underlying its anatomic heteroge-
neity (36, 37). By unbiased clustering analysis of the SVGs obtained 
from the iSpatial inferred data, we identified 12 distinct spatial pat-
terns of SVGs (Fig. 5B). Many of these patterns closely resemble the 
known anatomic subregions in the striatum. For example, the C12 
cluster is mainly expressed in the dorsal striatum, while C1 and C4 
clusters are highly enriched in the NAc (Fig. 5, B and C). In addi-
tion, C7 and C11 clusters correspond to the core region of the NAc, 
while the C2, C9, and C10 clusters represent the shell region 
(Fig. 5, B and C) (38). The C8 cluster is specifically expressed in the 
medial shell (Fig. 5, B and C, and fig. S6D), a NAc subregion known 
to have distinct anatomic and functional features (39–41). These results 
indicate that iSpatial can facilitate identification of biologically rele-
vant spatial gene expression patterns.

iSpatial improves analysis of ST data from liver
Having demonstrated the utility of iSpatial in the analysis of ST data 
from different brain regions, we next sought to test iSpatial’s perform
ance with ST data from other tissues. To this end, we analyzed a Vizgen 
MERFISH Mouse Liver Map dataset with 347 target genes included 
in the original data (https://vizgen.com/data-release-program/). By 
integrating the MERFISH data with a liver scRNA-seq dataset (42), 
iSpatial successfully inferred the expression of over 6000 genes on 
average in each single cell (Fig. 6, A and B), which increased by >20-
fold from the original data. The inferred spatial patterns were largely 
consistent with established knowledge. For example, iSpatial pre-
dicted selective expression of Slc1a2 and Aldh1b1 in cells around 
the central vein (CV) and portal vein (PV), respectively (Fig. 6C). 
Similarly, Cyp2e1 and Cyp2f2 were predicted to be biased to CV and 
PV, but they have broader distribution than Slc1a2 and Aldh1b1 
(Fig. 6C). All these spatial patterns were confirmed in previous 
studies (43, 44). We further generated the UMAP on the basis of 
iSpatial inferred expression profile and found a close correlation be-
tween cells’ positions on the UMAP and their in situ distribution 
along the CV-PV axis (Fig. 6, C and D), revealing a gradient expres-
sion profile along the CV-PV axis. Notably, although Liger and 
Seurat can also reveal a similar gradient expression pattern, a com-
parison among the three methods indicated that iSpatial achieved a 
higher specificity and accuracy, especially on genes with more spa-
tially restricted expression patterns. For example, Slc1a2 is selectively 
expressed in a monolayer surrounding the CV, which was accurately 
predicted by iSpatial (Fig.  6C), while Liger and Seurat revealed a 
more broad expression pattern (fig. S7, A and B). On the basis of the 
observed relationship between gene expression and spatial location 
of liver cells, we calculated a CV score for each cell (see Materials 
and Methods) to reflect its relative position to CV/PV, with a high/
low CV score indicating close to CV/PV, respectively. As expected, 
the CV score showed gradual increase from PV to CV in both the 
liver tissue and the UMAP space (Fig. 6, E and F). Then, all the genes 
in the inferred dataset (from iSpatial) were ranked according to their 
correlation with the CV score, which enabled us to systematically 
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Fig. 4. iSpatial can reduce false-positive and false-negative signals in the original ST data. (A) UMAPs showing the expression levels of representative cell type 
markers in raw STARmap (top panels) and iSpatial inferred (bottom panels) data. Excitatory neuron (Slc17a7), inhibitory neuron (Gad1), oligodendrocyte (Plp1), astrocyte 
(Aqp4), and endothelial cell (Cldn5). (B) The spatial expression of cortex layer markers in the raw STARmap (top panels) and inferred by iSpatial (middle panels) compared 
with the ISH data from the ABA (bottom panels). Layer information: “L1 to L6,” the six cortical layers; “cc,” corpus callosum; “HPC,” hippocampus. (C) The UMAP and spatial 
expression of Tac2 and Serpinb2 in the raw MERFISH (top panels) and inferred by iSpatial (middle panels) compared with the ISH data from the ABA (bottom panels).
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identify genes strongly related to the cell’s spatial distribution (Fig. 6G). 
From this analysis, 141 and 692 genes with correlation to CV score 
>0.3 or <−0.3 were predicted to be strongly enriched in cells close to 
CV or PV. In contrast, only 3 and 17 of these SVGs were included 
in the original MERFISH dataset. As expected, many genes known 
to be biased to CV or PV were found, including Gulo and Cyp2a5 
enriched in cells adjacent to the CV, Cdh1, and Etnppl mainly ex-
pressed in cells around the PV (Fig. 6H). Furthermore, by applying 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis to CV and PV enriched genes, we found that they are involved 
in different biological functions (Fig.  6I). For example, the genes 
highly expressed around the CV were enriched in “drug metabolism” 
and “PPAR signaling pathway,” while the genes highly expressed in the 
PV were enriched in “protein processing in endoplasmic reticulum (ER)” 
and “complement and coagulation cascades” (Fig. 6I and fig. S7C). 
These findings were consistent with previous reports (43, 44). Together, 
the above analyses demonstrate that iSpatial can overcome the limited 
target gene numbers of various ST analyses to the whole-transcrip-
tome level with high accuracy in different tissues.

DISCUSSION
ST assays simultaneously profile gene expression and their spatial 
location in tissue context, with the potential to unveil transcriptional 

features associated with tissue organization, cell-cell interaction, and 
region-specific physiological/pathological changes (45). Although 
sequencing and imaging-based ST techniques have been rapidly 
evolving (5), obtaining a genome-wide expression profile with single-
cell spatial resolution is still challenging. To overcome this limitation, 
we developed a computational tool iSpatial to infer the genome-wide 
spatially resolved transcriptional information. iSpatial is especially 
useful for imaging-based ST analysis (such as MERFISH, seqFISH, 
and STARmap), which in general has high detection efficiency and 
single-cell/subcellular spatial resolution, but is usually limited by 
the predefined gene targets. By integrating such kind of ST data 
with corresponding scRNA-seq profiles, the expression levels of un-
targeted genes could be inferred from scRNA-seq data, while the 
spatial information is directly inherited from the ST data, enabling 
high-resolution spatial analysis at the whole-transcriptome scale.

To ensure accurate expression imputation, it is critical to ac-
count for intrinsic noise in different original datasets. Specifically, 
high-throughput scRNA-seq has low capture efficiency on mRNA 
molecules, leading to a large proportion of zero counts for expressed 
genes (dropout). On the other hand, because of the variable perform
ance of different gene probes, imaging-based ST analysis may 
generate both FP and FN signals. iSpatial includes an expression 
stabilization step, which borrows the information from cells with 
similar global expression pattern to minimize random noise in the 

Fig. 5. iSpatial enables whole transcriptome–level spatial analysis. (A) Scatterplot showing genes with expression specificity in spatial location and UMAP projection 
of the corresponding scRNA-seq data. (B) The 12 clusters of the spatial variable genes in mouse striatum. The plot is color coded by the average gene expression in each 
cluster. (C) Inferred spatial expression signals of representative genes in different clusters. C1: Dio3 and Grm8; C5: Olfml1 and Slc12a2; C7: Acbd7 and Myo3b; C8: Sdk1 and 
Trhr; C11: Camk1g and Tmco5.
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Fig. 6. iSpatial infers the spatial expression patterns in liver. (A) The numbers of detectable genes in each cell in raw MERFISH (left) and after inferring by iSpatial 
(right). (B) Boxplot showing the detectable gene numbers without or with interfering by iSpatial. (C) Representative examples of genes exhibiting spatial patterns en-
riched in central vein (CV; Slc1a2 and Cyp2e1) or portal vein (PV; Cyp2f2 and Aldh1b1). (D) UMAPs showing the expression levels of the genes shown in (C). The UMAPs were 
generated with iSpatial inferred expression. (E) The spatial location of each cell colored by CV score. (F) The UMAP of all cells colored by CV score. (G) The scatterplot 
showing the ranked correlations between gene expression level and CV score. The names of the top 10 enriched genes in PV or CV are listed. (H) Examples of genes selec-
tively expressed nearby CV or PV. (I) The top 10 enriched Kyoto Encyclopedia of Genes and Genomes pathways of genes selectively expressed near CV or PV.

D
ow

nloaded from
 https://w

w
w

.science.org at B
ank of N

orw
ay on A

ugust 26, 2022



Zhang et al., Sci. Adv. 8, eabq0990 (2022)     26 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 14

original data (fig. S8, A and B). The proper alignment of scRNA and 
ST is critical for this method. Harmony integration bias to keeping 
the global heterogeneity instead of local heterogeneity (fig. S8, C 
and D). iSpatial uses two-round integration to reduce potential 
technology bias and batch effect on PCA space, allowing accurate 
integration of ST and scRNA-seq datasets (fig. S8, C and D). A com-
parative analysis indicated that two-round integration resulted in 
more accurate prediction than one-round integration (fig. S9). As a 
result, iSpatial exhibits a significantly higher accuracy in both 
benchmark analysis with Slide-seq data and cross-validation with 
image-based ST data when compared with other existing imputa-
tion methods. Notably, iSpatial is not only able to faithfully predict 
the spatial expression of genes out of the original ST data but also 
shows robust performance on reducing the FP/FN signals in the raw 
data. In both cortical STARmap and striatal MERFISH datasets, 
iSpatial is able to remove random expression of cell type–specific 
markers in nonrelevant cell types and correct some nonspecific 
background in the raw data (probably caused by poor performance 
of certain probes) to generate spatial expression patterns that are 
consistent with established knowledge. Because it is difficult to 
directly validate the detected mRNA sequences that generate the 
signals in imaging-based ST techniques, iSpatial provides a useful 
method to evaluate the performance of different probes.

iSpatial is based on a KNN approach, where the setting of K value 
is important. Theoretically, large K value will dilute the signals for 
rare cell types, while small K value can not only increase specificity 
but also reduce coverage. In iSpatial, we used weighted KNN when 
performing expression inference: The neighbors close to the inquired 
cell will be assigned higher weights than neighbors far from the cell 
in expression imputation. This should reduce the oversmoothing 
effect for rare cell types when relatively large K is used, as the neigh-
bors relatively far away from the rare cell types will have less impact 
on the inferred expression (fig. S10). Nevertheless, the optimal K 
value could vary for different datasets; thus, we implemented a func-
tion “recommend_k” in the iSpatial package to help the user deter-
mine the optimal K value.

In the real situation, the scRNA-seq and ST dataset would not 
always match exactly. To examine the performance of iSpatial under 
such situation, we compared Liger, Seurat, and iSpatial with unmatched 
scRNA-seq and ST datasets. Specifically, we used a MERFISH data 
covering a whole coronal mouse brain section (https://vizgen.com/
data-release-program/) and an scRNA-seq dataset (46) generated 
from the mouse prefrontal cortex (fig. S11A). The results indicate 
that iSpatial can specifically infer the expression of cells in ST by 
inputting the corresponding scRNA-seq data (fig. S11B). Cux1 and 
Tle4 are established markers for cortical layer 2/3 and layer 6, re-
spectively. iSpatial accurately inferred the expression patterns (fig. 
S11, C and D), demonstrating iSpatial can accurately impute the 
gene expression pattern in relevant cell types even when unmatched 
ST and scRNA-seq datasets were used.

We have tested iSpatial with multiple ST datasets generated from 
different tissues and techniques. In all the applications, iSpatial is 
able to expand spatial information from a predefined gene panel in 
the original ST data to the whole transcriptome, which renders several 
benefits for downstream analysis: First, it enables systematic identi-
fication of SVGs. In both the brain and liver datasets, we found that the 
number of SVGs increased from a few hundreds to several thousand 
after iSpatial imputation. Second, iSpatial enables the discovery of 
distinct spatial expression patterns across the tissue, which is achieved 

by spatial clustering analysis of SVGs. Many such unbiasedly iden-
tified expression patterns are biologically relevant. For example, we 
found that the SVG groups are organized into layer structure in the 
cortex, and they exhibit core/shell enrichment in the striatum, indi-
cating a tight relationship between gene expression and tissue orga-
nization. Third, iSpatial enables bioinformatic analysis requiring 
sufficient gene number or high statistical power, such as KEGG analy-
sis, to be performed on SVGs or SVG subgroups. For example, by 
inferring the transcriptome-wide spatial pattern in the liver, we found 
genes enriched in CV and PV are involved in distinct KEGG terms, 
suggesting a likely link between region-specific gene expression and 
function.

A potential limitation of iSpatial is that it requires corresponding 
ST and scRNA-seq data, which may not be always available. How-
ever, given the rapid development of ST and scRNA-seq techniques, 
and ongoing effort in large single-cell consortium and STs (4, 47, 48), 
we anticipate that iSpatial will be widely used to help understand the 
molecular basis of structural and functional heterogeneity in complex 
tissues of diverse organs in normal and disease states. To facilitate 
iSpatial implementation, we have made the iSpatial R package avail-
able at https://github.com/YiZhang-lab/iSpatial, where a tutorial on 
how to use iSpatial to integrate striatal scRNA-seq and MERFISH 
data to infer genome-wide spatial expression patterns can be found.

MATERIALS AND METHODS
iSpatial workflow
The workflow of iSpatial R-package contains the following steps: (i) 
expression stabilization, which removes possible FP and FN gene 
expression signals at single-cell level; (ii) integration, where two 
rounds of integration are performed to achieve accurate mapping of 
single-cell RNA-seq data and spatial transcriptome data; (iii) infer 
expression according to the weighted KNN; and (iv) downstream 
analysis, detection of spatial variable genes and patterns.

Expression stabilization
In the probe-based spatial transcriptome, we observed that some 
cell type markers are not fully detected in the corresponding cell clus-
ter. However, these markers are indeed expressed across the cluster 
based on the scRNA-seq data. This indicates some probes have low 
binding affinities, which generates FN signals. We also found some 
markers could be detected in some cell types that should not be ex-
pressed (random distributed in whole slice). This can be caused by 
nonspecific binding of some probes, which cause FP signals. iSpatial 
tries to remove these FN/FP signals to correct the expression in each 
cell. We assume that these FN/FP signals are randomly distributed. 
Thus, it can be corrected using the cells showing similar global 
expression patterns but do not exhibit FN/FP on the same gene. To 
remove these FN and FP signals in each single cell i, we first find the 
KNNs (KNNi, k) that most correlate with the cell i based on the global 
expression pattern.

Ei: the vector of gene expression in cell i
​​​   E ​​ i​​​: the vector of corrected gene expression in cell i
KNNi, k : {KNNi,1, KNNi,2, …, KNNi, k}: the set of KNN of cell i
Then, we correct the gene expression ​​​   E ​​ i​​​ by the expression of KNNs

	​​​    E ​​ i​​  = ​ E​ i​​ + (1 −  ) ​∑ k​ ​​ ​E​ ​KNN​ i,k​​​​​	
where  controls the weight of expression from cell i and neighbors. 
By default, we set  = 0.5. Higher value strongly corrects the noise 
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by the KNNs, but loses cell specificity, which may cause lower de-
tection power of some rarely expressed genes.

Integration of ST data and scRNA-seq data
To achieve accurate integration of ST data and scRNA-seq data, 
iSpatial uses a two-round integration approach. In the first round, 
we adopted an RPCA method from Seurat. At this step, the PCA 
spaces are calculated in both datasets. Then, one dataset is projected 
onto the other’s PCA space and constrain the cell anchors with the 
same mutual neighbors. We use the “FindIntegrationAnchors” func-
tion with the parameter reduction = “rpca” in Seurat (version 4.0.5) 
to find the anchors and use “IntegrateData” to get the integrated 
data. For the second-round integration, we project the cells from 
both spatial transcriptome and scRNA-seq into a shared PCA em-
bedding. Then, an iterative clustering method is used to remove the 
technology bias and batch effect on PCA space, which gets harmo-
nious PCA embeddings for both datasets. Harmony (version 0.1.0) 
is then used to generate normalized PCA embeddings in this step.

Infer spatial expression
After integrating two datasets into one reduced dimension space, 
iSpatial uses a weighted KNN approach to infer the expression of 
nontargeted genes. For each cell t in spatial transcriptome data, 
iSpatial searches the KNNs (KNNt,k).

t: cell in spatial transcriptome data
c: cell in scRNA-seq data
KNNt,k : {KNNt,1, KNNt,2, …, KNNt,k}: the set of KNN of cell t
Then, KNNt,k are restricted to the cells from scRNA-seq data, 

because the cells from scRNA-seq data contain the expression in-
formation of the whole transcriptome

	​ KNN ​′​ t,k​​ : ​KNN​ t,k​​  ∈  c​	

The final inferred expression ​​  ​E​ t​​​ ​of cell t is calculated by the ex-
pression of cell t itself and the expression of KNN′t,k

	​​   ​E​ t​​​  =  (1 −  ) ​E​ t​​ + (​∑ k​ ​​ ​​ t,k​​ ​E​ ​KNN​ t,k​ ′ ​ ​​)​	

where  is the weight of each neighbor k of cell t. For the genes tar-
geted in cell t,  balances the expression from the spatial transcrip-
tome and scRNA-seq.  ∈ [0,1]. For genes not measured in ST data, 
 = 1. The weights  between cell t and its neighbor KNN′t are de-
fined by the normalized transcriptional distance dt,k. Here, iSpatial 
uses 1 − Pearson’s correlation coefficient to measure the distance

	​​ d​ t,k​​  =  dist(​E​ t​​, ​E​ ​KNN​ t,k​ ′ ​ ​​)​	

	​​ ​ t,k​​  = ​ 
​​d​ t,k​​​​ 2​

 ─ 
​∑ k​​ ​​d​ t,k​​​​ 2​​

 ​​	

and

	​​

dist(​E​ t​​, ​E​ ​KNN​ t,k​ ′ ​ ​​ ) = 1 − cor(​E​ t​​, ​E​ ​KNN​ t,k​ ′ ​ ​​)

​   = ​ 
∑ (​E​ t​​ − ​​ 

_
 E ​​ t​​ ) (​E​ ​KNN​ t,k​ ′ ​ ​​ − ​​ 

_
 E ​​ ​KNN​ t,k​ ′ ​ ​​)   ────────────────────   

​√ 
_

 ∑ ​(​E​ t​​ − ​​ 
_

 E ​​ t​​)​​ 2​ ​ ​√ 
_________________

  ∑ ​(​E​ ​KNN​ t,k​ ′ ​ ​​ − ​​ 
_

 E ​​ ​KNN​ t,k​ ′ ​ ​​)​​ 2​ ​
 ​ ​​	

Identifying SVGs
To identify significant SVGs, the x and y axes of the spatial location 
are evenly divided into n bins, and then the spatial location is fur-
ther grided into n × n grids. For each gene j, we calculate the average 

expression values Ej over the n2 grids. We then randomly sample 
the spatial location of each cell and calculate the average expression 
E′j over the randomly sampled n2 grids. If a gene j has no specific 
spatial expression pattern, then the distribution of observed Ej should 
not be different from that of random E′j. On the contrary, if a gene 
has strong spatial expression pattern, then the distribution Ej should 
be significantly different from E′j. Thus, whether a gene exhibits 
spatial expression pattern depends on whether there is a difference 
between the distribution of Ej and E′j. Here, we apply a nonparametric 
two-sided Mann-Whitney U test to determine the difference between 
Ej and E′j. We also offer the Kolmogorov-Smirnov test to test the 
distribution differences.

Some studies found that a gene with spatial expression pattern 
always displays a specific expression bias on the scRNA-seq UMAP/​
t-distributed stochastic neighbor embedding (tSNE) projection. iSpatial 
also integrates scRNA-seq information into spatial variable gene detection. 
If a gene not only displays spatial expression pattern on spatial tran-
scriptome data but also exhibits expression specificity on scRNA-seq 
UMAP/tSNE projection, then this gene has a higher confidence of spa-
tial expression pattern. Similar to the detection of spatial expression 
gene on spatial location, iSpatial uses the same method to detect whether a 
gene displays a specific expression location on scRNA-seq UMAP/
tSNE. To integrate these two lines of information, the final P value is 
equal to the P value from the ST data multiplied by the P value from 
the scRNA-seq data. Then, the adjusted P values are calculated to con-
trol the false discovery for multiple comparisons.

SVG clustering
The genes with spatial expression patterns could be grouped into 
clusters. For each gene, iSpatial captures the spatial expression fea-
tures according to the average expression value over the n2 grids, 
which was described before. On the basis of these features, Pearson’s 
correlation coefficients are calculated for pairs of genes. Then, dis-
tances among genes are measured by 1 minus Pearson’s correlation 
coefficients. Last, Hierarchical clustering is performed using “hclust” 
in R to spatial variable genes. “cutree” function from R is used to 
group these genes into desired number of groups.

Single-cell RNA-seq data processing
The initial gene × cell matrix for each study was downloaded ac-
cording to the original papers. The expression matrix was then trans-
ferred into Seurat object for downstream analysis. The raw counts 
of gene expression profile of each cell were normalized to 10,000 counts 
and natural log transformed using the Seurat function “NormalizeData.” 
To generate UMAP, we used standard pipeline from Seurat. In short, 
“FindVariableFeatures” was used to identify top variable genes, 
“ScaleData” was used to scale and center these genes in the data, and 
then PCA was performed by “RunPCA” on the basis of the selected 
features. Last, the top 30 principal components from PCA were 
used to generate the UMAP projection by “RunUMAP” with the 
parameters “dims = 1:30.”

Mouse hippocampus data processing
The Slide-seq V2 of mouse hippocampus was downloaded from the 
Broad Institute single-cell portal website (https://singlecell.
broadinstitute.org/single_cell/study/SCP815). Here, we only use 
the “Puck_200115_08” dataset (32). This dataset contains two files, 
the raw expression matrix and the barcode locations. The data 
processing of Slide-seq V2 followed the same procedure as that of 

D
ow

nloaded from
 https://w

w
w

.science.org at B
ank of N

orw
ay on A

ugust 26, 2022

https://singlecell.broadinstitute.org/single_cell/study/SCP815
https://singlecell.broadinstitute.org/single_cell/study/SCP815


Zhang et al., Sci. Adv. 8, eabq0990 (2022)     26 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 14

single-cell RNA-seq. The main difference is that Slide-seq contains 
spatial location of each cell. According to the vignettes of Seurat, the 
coordinate of each cell is stored as a “SlideSeq” class in Seurat object. 
For the scRNA-seq data of mouse hippocampus, we used a published 
dataset (1). To facilitate analysis, we used a preprocessed Seurat 
object (www.dropbox.com/s/cs6pii5my4p3ke3/mouse_hippocam-
pus_reference.rds?dl=0) offered by the Satija Laboratory.

Mouse hemibrain data processing
The single-cell resolution Stereo-seq data of mouse hemibrains is 
downloaded from https://db.cngb.org/stomics/mosta/ (34). We first 
transfer single cell–level expression matrix to Seurat, and the spatial 
locations of each cell are inputted into Seurat object. Then, the cells 
with expressed genes over 500 are kept. The expression was normal-
ized by NormalizeData. The corresponding scRNAseq data were 
downloaded from Linnarsson laboratory (http://mousebrain.org/
adolescent/downloads.html) (2). We only used cells from the cen-
tral nervous system and removed cells not in the brain regions pro-
filed by Stereo-seq.

Mouse cortex data processing
The STARmap data of the mouse visual cortex were downloaded 
from the STARmap resource website (www.starmapresources.org/
data). We chose the dataset “20180505_BY3_1kgenes” that profiles 
1020 genes. The expression matrix data “cell_barcode_count.csv” 
were imported to Seurat object. The spatial location coordinate of 
each cell was extracted from “labels.npz” according to the method 
provided by the original paper (https://github.com/weallen/STARmap). 
The cell coordinates were integrated into Seurat object. The single-
cell RNA-seq was downloaded from the ABA (https://portal.brain-
map.org/atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq). 
The “mouse_VISp_2018-06-14_exon-matrix.csv” file was used to 
generate the expression profile. Low-quality cells were removed according 
to the meta data “mouse_VISp_2018-06-14_samples-columns.csv.”

Mouse striatum data processing
The mouse striatum merFISH data were processed and normalized 
as described in the original paper (36). Briefly, the expression of 
each cell was normalized by cell size and total RNA counts. Then, 
the log-transformed data were applied to the expression matrix. 
Here, we used the data from a representative slice (slice 10). We 
used the preprocess Seurat object data in www.dropbox.com/s/
ghkcovukgtctm76/NA_merFISH.RDS?dl=0. A down-sample version 
of these data is provided by the iSpatial package as a test dataset. 
After installing the R package, this command “data(NA_merFISH)” 
could load the merFISH data into the R environment.

The scRNA-seq data of mouse striatum were downloaded from 
GEO under accession GSE118020. To speed up the analysis, we 
down-sampled the full dataset to 10,000 cells using R function 
“sample.” Then, these data were used to infer the spatial expression 
of all genes.

Mouse liver data processing
The mouse liver merFISH data are download from Vizgen MERFISH 
Mouse Liver Map (https://vizgen.com/data-release-program/), which 
targets 347 genes. This dataset contains multiply slices. We only 
used slice 3 from the first replicate in this manuscript. The merFISH 
data processing is the same as described above. The matched 
scRNA-seq data were download from GEO under the accession 

GSE166504 (42). The original dataset not only contains wild-type 
healthy livers but also livers with nonalcoholic fatty liver disease. 
Three healthy samples (Hepatocyte_Chow_Animal1_Capture1, 
Hepatocyte_Chow_Animal2_Capture1, and Hepatocyte_Chow_
Animal3_Capture1) were used in this analysis.

CV score calculation
To measure the distance between each cell and CV, we calculated a 
CV score of each cell on the basis of well-known CV markers 
(Slc1a2 and Cyp2e1) and PV markers (Cyp2f2 and Aldh1b1). For 
each cell, the CV score was defined by the mean expression level of 
Slc1a2 and Cyp2e1 minus mean expression level of Cyp2f2 and 
Aldh1b1. A positive value means more likely that the cell is located 
near the CV. On the contrary, a negative value indicates that the cell 
is located near the PV. After defining the CV score, we could then 
identify the genes specifically expressed in CV/PV. For each gene, 
we calculated the Pearson’s correlation between the corresponding 
expression value and CV score across all cells. A positive correlation 
coefficient represents a gene preferentially expressed in CV, and a 
negative one represents a gene preferentially expressed in PV. Ac-
cording to the distribution of the correlation coefficient among all 
genes, we manually chose >0.3 or <−0.3 as cutoffs to define genes 
with most CV/PV bias.

Visualize the spatial expression
Visualization of gene spatial expression was achieved using the 
“SpatialFeaturePlot” in the Seurat package. iSpatial provides a func-
tion “spatial_signature_plot” for spatial visualization of the mean 
expression of a group of genes.

Benchmark methods
We chose two popular methods for comparison: Seurat (version 
4.0.5) and rliger (version 1.0.0). The Seurat provides a “canonical 
correlation analysis” (CCA) method to integrate the spatial transcrip-
tome and scRNA-seq. Here, we used the function “FindTransferAnchors” 
with parameter ‘reduction = “cca”’ to identify the integrated anchors. 
Then, genes expression values from scRNA-seq data were transferred 
to spatial transcriptome data using “TransferData” with the parameter 
‘weight.reduction = “cca”.’ Different from Seurat, Liger uses an in-
tegrative non-negative matrix factorization method to integrate the 
datasets, which is embedded in the function “optimizeALS.” For 
imputing the nontargeted genes by rliger, we performed the follow-
ing steps according to the rliger vignettes: “createLiger,” “normalize,” 
“scaleNotCenter,” “optimizeALS,” and “quantile_norm.” Last, 
“imputeKNN” was used to search the nearest neighbors and impute 
the nontargeted genes.

Performance evaluation
The Slide-seq V2 data contain a total of 23,264 genes. We randomly 
sampled 3000 genes as the training dataset and used others as vali-
dation. After performing different methods to infer the spatial ex-
pression of all genes, we conducted the comparisons between the 
inferred expression values and the raw expression values. At cell level, 
we calculated the Pearson’s correlation coefficient of each gene across 
all cells and then compared the overall differences of correlation 
coefficients among all genes of different methods. At spatial expres-
sion level, we grided the spatial location into 50 × 50 bricks. Then, 
we calculated the mean expression in each brick and compared the 
differences between raw expression and inferred one using 50 × 50 
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bricks as features. In addition, we compared the detection accura-
cies of spatial variable genes among three methods. The SVGs were 
also called using validation dataset as the ground truth. Receiver 
operating characteristic (ROC) curves and AUC were performed by 
R package pROC (version 1.18.0) (49).

Tenfold cross validation
For the datasets other than Slide-seq that we do not have the ground 
truth, we used 10-fold cross validation to evaluate the prediction per-
formance. For the targeted genes in spatial transcriptome, we ran-
domly separated it into 10 groups. Each time, we chose nine groups 
to infer the expression and used the left one to validate. After 10 rounds 
of inferring and validation, every gene was used to validate the pre-
diction performance. Then, correlation of gene level and spatial ex-
pression level were calculated as described above.
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